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In this supplemental section we will discuss several distinct sets of differentially expressed proteins that
are unique for either daf-2 or dietary-restricted nematodes (Supplemental table 1). In addition we
provide an overview of key, previous transcriptome-derived associations between gene

categories/functions and longevity are corroborated or not by our present proteomic analysis.

Upregulation of proteasome subunits upon DR

Annotation clustering indicated overrepresentation of proteasome subunits among upregulated
proteins in DR worms (Supplemental table 1). Indeed, several a and B subunits of the 20S core- and 195
regulator complex of the proteasome were increased significantly in DR worms (Supplemental figure 1),
which is confirmed by GSEA (NESpr = 2.08; P < 0.001; FDR < 0.003). The (oxidative) stress-responsive
Nrf/SKN-1 transcription factor is a potent regulator of 26S proteasome subunit gene expression in both
mammals and C. elegans (Kwak et al. 2003; Oliveira et al. 2009; Li et al. 2011; Niu et al. 2011).
Furthermore, inhibition of proteasomal gene expression by RNAi results in activation of Nrf/SKN-1 and
subsequent compensatory upregulation of proteasomal subunits in both mammals and C. elegans (Kraft
et al. 2006; Kahn et al. 2008; Radhakrishnan et al. 2010; Li et al. 2011). We therefore hypothesize that
SKN-1 is responsible for the observed increased levels of 26S proteasome subunits in DR nematodes,
since activation of SKN-1 in the ASI neurons is required for lifespan extension by bacterial dilution
induced DR (Bishop & Guarente 2007). In response to (oxidative) stress, SKN-1 translocates to the
nucleus and regulates the expression of hundreds of genes (An & Blackwell 2003; Tullet et al. 2008;
Oliveira et al. 2009). Since it has been established that the 20S core of the proteasome is responsible for
the degradation of the majority of oxidatively damaged proteins, it makes sense that regulation of
proteasomal subunit expression should fall under the control of SKN-1 (Davies 2001; Breusing & Grune

2008; Wang et al. 2010). It also follows that increased proteasome expression could potentially alleviate
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age-related oxidative damage resulting in lifespan extension of diet-restricted animals (Opalach et al.

2010).

daf-2-specific upregulation of transthyretin-like proteins

The abundance of several nematode-specific proteins containing a transthyretin-like (TTR-like) domain
was significantly increased in daf-2(e1370) mutants (NES,yz, = 1.73, P = 0.003; FDR = 0.017;
Supplemental figure 2F). This finding is consistent with reported transcriptional activation of TTR-like
genes in daf-2 mutants and/or dauers (McElwee et al. 2004). C. elegans encodes 59 genes that contain a
transthyretin-like domain, with rather weak similarities to mammalian transthyretin (Sonnhammer &
Durbin 1997). In mammals, transthyretin is best known as a transporter for the thyroid hormone,
thyroxine (T4) and retinol (vitamin A). However, in recent years, a much larger diversity in function and
ligand binding for TTR has been acknowledged, especially as a neuroprotective component in
neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease (Fleming et al. 2009). In
nematodes, nothing is known about the ligand-specificity and respective functions of TTR-like proteins,
although a predicted signal sequence suggests a transmembrane location (Sonnhammer & Durbin 1997).
TTR-like proteins were also found among the most represented in the excreted/secreted proteome of
parasitic nematodes (Nagaraj et al. 2008). Given the evolutionary conservation of the ligand-binding
site, McElwee et. al. (2004) have proposed some TTRs may play an active role in binding and excreting
potentially toxic lipophilic compounds (McElwee et al. 2004). However, affinity-purified transthyretin-
like protein 1 (TTL-1) from the nematode Ostertagia ostertagia, which shows high sequence similarity
with several C. elegans TTR-like proteins, was devoid of any lipid and thyroid hormone binding
properties (Saverwyns et al. 2008). Notably, RNAi against ttr-1 extends nematode life-span in a daf-16

dependent fashion and enhances dauer formation, suggesting a role for TTR-1 as part of the IIS pathway
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(Hansen et al. 2005). Several TTR-like genes were induced upon infection with pathogenic LF82 E. coli,

which suggests TTR-like proteins could be involved in the immune response (Simonsen et al. 2011).

Differential expression of proteins involved in the stress response and innate immunity

We observed DAF-16-induced upregulation of several glutathione-S-transferases (GSTs) and one UDP-
glucuronosyltransferase (UGT) (Supplemental figure 2A). GSTs and UGTs are key enzymes in phase 2
detoxification by conjugation of xenobiotic or endobiotic lipophilic compounds to glutathione and UDP-
glucuronic acid, which greatly facilitates their excretion from the cell (phase 3) (Tukey & Strassburg
2000; Sheehan et al. 2001; Ayyadevara et al. 2007). Some GSTs are also involved in oxidative-stress
resistance (Tawe et al. 1998; Leiers et al. 2003). The C. elegans genome is predicted to encode 44 GSTs
and 65 UGTs and several groups have reported DAF-16 and/or SKN-1-dependent transcriptional
upregulation of numerous UGTs and GSTs (An & Blackwell 2003; Murphy et al. 2003; Wang & Kim 2003;
McElwee et al. 2004; Ayyadevara et al. 2005a; Halaschek-Wiener et al. 2005; Tullet et al. 2008; Oliveira
et al. 2009; Jones et al. 2010). GST-10 was shown to be required for full daf-2 longevity and its over-
expression increases wild-type mean lifespan (Ayyadevara et al. 2005a; Ayyadevara et al. 2005b). We
note that GST-42 encodes a putative maleylacetoacetate isomerase that participates in tyrosine
catabolism, which is upregulated in daf-2 and requires glutathione as coenzyme. Therefore, GST-42 as

such has probably no direct role in detoxification or oxidative stress metabolism.

We also detected two cadmium responsive (CDR) gene products, CDR-2 and CDR-4, which appear
induced by DAF-16 (Supplemental figure 2A). The CDR gene family in C. elegans consists of seven
hydrophobic, lysosomal membrane proteins with a conserved glutathione-S-transferase domain (Dong
et al. 2005; Dong et al. 2008; Hunter et al. 2009). Their promoter region contains different stress-
responsive elements (antioxidant-, heatshock- and metal-responsive elements). However, the exact role

of these genes in the stress response remains to be determined.
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Another aspect of the stress response is the conservation of existing proteins via molecular
chaperones/heat shock proteins (HSPs). Although we detected differential expression of several HSPs,
only one (TO5E11.3, an ortholog of the GRP94/GP96 branch of HSP90 heat shock factors) was
upregulated in daf-2 mutants (Supplemental figure 2B). UGGT-1 which is also DAF-16-induced, encodes
one of two C. elegans UDP-Glc:glycoprotein glucosyltransferases (UGGTs), which is responsible for
monitoring the correct folding of glycoproteins in the ER by glycosylating not properly folded

glycoproteins and targeting them for proteasomal degradation (Guerin & Parodi 2003; Buzzi et al. 2011).

Strong DAF-16-dependent transcriptional activation of HSP20/a-crystallins or small heatshock proteins
(sHSPs) was previously observed in daf-2 mutants (Hsu et al. 2003; Murphy et al. 2003; McElwee et al.
2004). This activation of sHSPs is required for the full lifespan extension in daf-2 mutants (Hsu et al.
2003). Y55F3BR.6 and HSP12.2 represent two sHSPs in our dataset (Kokke et al. 1998). Interestingly,
these sHSPs appear specifically activated in DR but not in daf-2 mutants. This suggests that (a subset of)
sHSPs are possibly also involved in DR-induced lifespan extension. Surprisingly, several HSPs are actually
down-regulated in daf-2 mutants (DAF-21, HSP-1, DNJ-19), dietary restriction (T24H7.2), or in both daf-2
and DR worms (HSP-6). Previously, RNAi of daf-21 and hsp-1, but not dnj-19, was shown to result in a
small reduction in age-1(hx546) lifespan, and RNAi of daf-21 increased susceptibility to pathogen
infection (Morley & Morimoto 2004; Singh & Aballay 2006). DAF-21 is a member of the HSP90 family of
heat shock factors, but it is also part of a guanylyl-cyclase-dependent chemosensory pathway that likely
underlies DAF-21’s involvement in the constitutive dauer formation phenotype (Birnby et al. 2000). HSP-
6 is a mitochondrial-specific chaperone of the HSP70 superfamily involved in the mitochondrial UPR
(mtUPR), which has recently been implicated in ETC-mediated longevity (Yoneda et al. 2004; Durieux et
al. 2011). The level of HSP-6 also appears to correlate with C. elegans lifespan; overexpression of HSP-6
results in lifespan extension, whereas RNAi of hsp-6 was reported to cause mitochondrial dysfunction

and decreased lifespan (Yokoyama et al. 2002; Yoneda et al. 2004; Kimura et al. 2007). We note that
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other groups have reported similar findings on the expression level of DAF-21 and HSP-6 in daf-2
mutants (Dong et al. 2007; Durieux et al. 2011). We can conclude that impaired IS does not lead to a
general upregulation of HSPs, and regulation of HSPs appears more complex. Interestingly, similar
conclusions were drawn from an HSP expression study in Ames dwarf mice deficient in growth
hormone/IGF-1 signaling, where expression of several HSPs actually correlate positively with the level of

IIS (Swindell et al. 2009).

Several proteins implicated in the oxidative stress response were upregulated in daf-2 mutants,
including, catalases (CTL-2 and CTL-1/-3), superoxide dismutase (SOD-1), 2-Cys peroxiredoxin (PRDX-3),
glutaredoxin (GLRX-10) and glutathione peroxidase (RO5H10.5), consistent with increased oxidative
stress resistance of daf-2 mutants (Supplemental figure 2C) (Larsen 1993; Vanfleteren 1993; Honda &
Honda 1999). Interestingly, protein levels of RO5H5.3, a thioredoxin, and MSRA-1, the single methionine
sulfoxide reductase A (MsrA) gene in C. elegans (Lee et al. 2005), are reduced in daf-2 mutants. MsrA is
an important antioxidant enzyme that repairs oxidatively damaged methionine residues and is well-
conserved from prokaryotes to eukaryotes (Cabreiro et al. 2006; Kim & Gladyshev 2007). The C. elegans
genome encodes a single MsrA gene (msra-1) with biochemically confirmed methionine sulfoxide
reductase activity (Lee et al. 2005). Similar to other species, mutation in msra-1 renders C. elegans
hypersensitive to oxidative stress, reducing both wild-type and daf-2 lifespan (Minniti et al. 2009).
Remarkably, Minniti et al. report increased daf-16-dependent MSRA-1 enzyme activity in adult daf-2
mutants that increases even further with advancing age. This is unexpected in light of our own finding
that total MSRA-1 protein levels in daf-2 mutants are robustly and consistently decreased. This could

imply strong post-translational regulation of MSRA-1 enzyme activity.

Increased expression of antioxidant enzymes is thought to be an essential part of the worms’ innate
immunity. In response to pathogenic bacteria C. elegans generates ROS at the site of infection in order

to kill off the offending pathogens (Chavez et al. 2007; Chavez et al. 2009). Since this is detrimental to
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the local endogenous tissue as well as proteins, the worm protects itself from excessive damage by
concurrently activating antioxidant enzymes and heat-shock proteins through DAF-16 and SKN-1 (Chavez
et al. 2007; Mohri-Shiomi & Garsin 2008; Chavez et al. 2009; Hoeven et al. 2011). Therefore, the over-
expression of anti-oxidant enzymes in IS mutants explains their increased resistance to various bacterial
pathogens (Garsin et al. 2003; Troemel et al. 2006; Wang et al. 2011). In addition to anti-oxidant
enzymes, whole-genome transcript profiling studies have revealed DAF-16-dependent gene regulation
of other known antimicrobial proteins, including C-type lectins (CLECs), lysozymes and saposins
(McElwee et al. 2003; Murphy et al. 2003; Halaschek-Wiener et al. 2005). CLECs and lysozymes are an
important part of the innate immune response in many animals, including C. elegans (Mallo et al. 2002;
O'Rourke et al. 2006; Troemel et al. 2006; Alper et al. 2007; Wong et al. 2007; Schulenburg et al. 2008;
Irazoqui et al. 2010; Boehnisch et al. 2011). Consistent with these studies, we found extensive DAF-16-
dependent regulation of several CLECs and protist-type lysozymes (Supplemental figure 2D).
Interestingly, the abundance of several lysozymes and CLECs is actually decreased in daf-2 and/or DR
animals. McElwee et al. have reported the downregulation of 7 CLEC domain containing genes in daf-2
(McElwee et al. 2004). Boehnisch et al. have reported reduced expression of five out of eight protist-like
lysozymes upon infection with the pathogenic B. thuringiensis, notwithstanding the requirement of
these genes for a full host defense (Boehnisch et al. 2011). It therefore remains possible that these
genes could have other functions and, perhaps, only indirectly influence C. elegans survival upon

pathogen infection.

DR and IIS deficiency leads to differential expression of different aspartyl proteases (ASP-1,-3,-4,-5,-6,
Y39B6A.24 and F28A12.4), Serine carboxypeptidases (F13D12.6, PCP-3 and Y16B4A.2), and cysteine
proteases (CPL-1 and CPZ-1) (Supplemental figure 2E). Several groups have reported increased
expression of aspartyl proteases upon pathogen infection, suggesting a role for cathepsins in worm

innate immunity (O'Rourke et al. 2006; Wong et al. 2007; Simonsen et al. 2011). The exact role of



141  autophagy and cathepsins in the immune response is not entirely clear and can have either remediating
142 (Jia et al. 2009) or detrimental (Syntichaki et al. 2002; Wong et al. 2007) effects upon infection,

143  depending on the pathogen source.
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146  Supplemental figure 1: Upregulation of the proteasome complex in diet-restricted worms.
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Supplemental Figure 2: Differential expression of enzymes in cellular stress defensive systems (A-E) and

DAF-16 specific activation of transthyretin (F).
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