Supporting information of

"Archaeal Protein Phosphorylation: Impact of Phosphatase Deletion on Motility and Energy Metabolism in *Sulfolobus acidocaldarius*"

Julia Reimann, Dominik Esser, Alvaro Orell, Fabian Amman, Trong Khoa Pham, Ann-Christin Lindås, Rolf Bernander, Phillip C. Wright, Bettina Siebers and Sonja-Verena Albers

Figure S1. PCR verification of both phosphatase deletion mutants. PCR of the markerless in-frame deletion mutants $\Delta saci_ptp$ and $\Delta saci_pp2a$ resulted in smaller PCR products of the genomic region compared to the parant strain MW001 (1786 nt vs. 2238 nt and 1869 nt vs 2733 nt, respectively). The deletion mutants were additionally confirmed by sequencing.

Figure S2. Slower growth rate of $\Delta saci_pp2a$ **in comparison to MW001 and** $\Delta saci_ptp$. All three strains were grown for 160 hours in Brock medium supplemented with 0.1% NZ-amine, 0.2% sucrose and 10 µg/ml uracil at 76°C. $\Delta saci_ptp$ was comparable in growth to the background strain MW001, whereas the $saci_pp2a$ deletion mutant displayed an extended lag-phase and also a slower growth rate. All growth experiments were performed in triplicate, and the standard deviation is shown.

Figure S3. Cell shape and size of the phosphatase deletion mutant $\Delta saci_pp2a$, $\Delta saci_ptp$ and MW001. MW001 and $\Delta saci_ptp$ show the regular spherical cell shape of *Sulfolobales* (A and B, upper panel), whereas the *saci_pp2a* deletion mutant showed a significantly increased amount of larger cells (C, upper panel). Evaluation of the cell size distribution using ObjectJ revealed a spread distribution in $\Delta saci_pp2a$ towards larger sizes (C, lower panel), compared to the parent strain MW001 (A, lower panel) and the *saci_ptp* deletion strain (B, lower panel). The calibration bar indicates 10 µm.

Figure S4. Flow cytometry of MW001 in comparison to $\Delta saci_ptp$ and $\Delta saci_pp2a$. (A) All three strains show the typical DNA content distribution of exponentially growing *Sulfolobus* cultures [1]. (B) In the cell size the Ser/Thr phosphatase deletion mutant ($\Delta saci_pp2a$) shows an increase in the relative number of larger cells as compared to the parent strain and the Tyr phosphatase deletion mutant ($\Delta saci_pp2a$).

Figure S5. Complementation of the *Asaci_pp2a* **deletion.** $\Delta saci_pp2a$ and MW001 were transformed with the control plasmid pCMalLacS and the complementation plasmid pSVA1064. (A) DIC light microscopy images of $\Delta saci_pp2a$ in comparison to MW001. In the complemented strain $\Delta saci_pp2a + pSVA1064$, the cells became smaller and more homogeneous as compared to the parent strain. (B) Growth curve at 76°C in Brock medium supplemented with 0.1% NZ-amine and 0.2% sucrose. The complemented strain $\Delta saci_pp2a + pSVA1064$ grew similar to the wild type strain. The scalebar indicates 10 µm in all images. All growth curves were performed in triplicate, and the standard deviations are shown.

Figure S6. Purification of Saci-PP2A and Saci-PTP. 2 μ g of Saci-PP2A (A) after size exclusion chromatography and Saci-PTP (B) after immobilized metal affinity chromatography were applied to SDS-PAGE. The SDS-gel was stained with Coomassie brilliant blue and PageRulerTM Unstained Protein Ladder (Fermentas) was used as size ladder.

Figure S7.

Figure S8. Metal-ion dependency of Saci-PP2A in the presence of EGTA. Enzyme activity was measured in the presence of 10 mM p-NPP, 5 mM Me²⁺ and 1 mM EGTA. The highest activity was observed with Cu²⁺ and Mn²⁺.

Figure S8. (A) Number of RNA-seq reads and genomic regions to which they were mapped, for samples from the parent strain MW001, $\Delta saci_ptp$ and $\Delta saci_pp2a$. (B+C) Plots of normalized mean expression intensities versus log₂ fold change for parent strain against $\Delta saci_pp2a$ (B) and parent strain against $\Delta saci_ptp$ (C). Significantly altered genes (p-value < 0.055) are indicated red.

Table S1. Phosphoproteome composition in *S. acidocaldarius* phosphatase deletion mutants $\Delta saci_ptp$ (S1b) and $\Delta saci_pp2a$ (S1c) and the parent strain MW001 (S1a). (extra files)

Table S2. Comparison between the number of phosphorylated proteins in MW001, Δ*saci_pp2a*, Δ*saci_ptp* with the number of proteins assigned to different arCOG categories in the wild type strain *S. acidocaldarius* DSM 639. Cellular metabolism: arCOGs C, E, F, G, H, I, P and Q; information storage/processes: D, M, N, T, O, U and V; information storage/processing (J, K and L); poorly characterized proteins (R, S and X).

Table S3. Differentially regulated genes in the *S. acidocaldarius* phosphatase deletion mutants $\Delta saci_ptp$ (Table S3b) and $\Delta saci_pp2a$ (Table S3a). (extra files)

arCOG category		Total		∆saci_pp2a		∆saci_ptp	
	al cod category		%	No.	%	No.	%
arCOG C	Energy production and conversion	15	5.7	8	5.7	7	5.7
arCOG E	Amino acid transport and metabolism	6	2.3	3	2.1	3	2.5
arCOG F	Nucleotide transport and metabolism	4	1.5	2	1.4	2	1.6
arCOG G	Carbohydrate transport and metabolism	5	1.9	4	2.9	1	0.8
arCOG H	Coenzyme transport and metabolism	5	1.9	1	0.7	4	3.3
arCOG I	Lipid transport and metabolism	6	2.3	2	1.4	4	3.3
arCOG J	Translation, ribosomal structure and biogenesis	4	1.5	1	0.7	3	2.5
arCOG K	Transcription	12	4.6	5	3.6	7	5.7
arCOG L	Replication, recombination and repair	4	1.5	2	1.4	2	1.6
arCOG N	Cell motility	4	1.5	2	1.4	2	1.6
arCOG O	Posttranslational modification, protein turnover, chaperones	3	1.1	3	2.1	0	0.0
arCOG P	Inorganic ion transport and metabolism	4	1.5	3	2.1	1	0.8
arCOG Q	Secondary metabolites biosynthesis, transport and catabolism	3	1.1	2	1.4	1	0.8
arCOG R	General function predicted only	10	3.8	3	2.1	7	5.7
arCOG S	Function unknown	34	13.0	20	14.3	14	11.5
arCOG T	Signal transduction mechanism	1	0.4	0	0.0	1	0.8
arCOG V	Defense mechanism	2	0.8	2	1.4	0	0.0
arCOG X	Not predicted	4	1.5	2	1.4	2	1.6
No arCOG	No arCOG	8	3.1	3	2.1	5	4.1
Total		262	100	140	100	122	100

Table S4. Distribution of detected mRNAs in arCOG categories.

Table S5. Primers used in this study.

primer	sequence (5´ - 3´)	purpose	
	primers for pSVA1016		
1535	CCCC <u>GGATCC</u> GTTTTCCGATTAGAACTATT	∆ <i>saci0545</i> upstr fw <i>Bam</i> HI	
1536	CATAAAATCTTCCATGTCTTCATCACTCTGAAGAT	∆saci0545 upstr rev ol	
1537	CAGAGTGATGAAGACATGGAAGATTTTATGATAGA	Δ <i>saci0545</i> downstr fw ol	
1538	CCAAA <u>CTGCAG</u> AGCCTTATGAATTAAGCTC	Δ <i>saci0545</i> downstr rev <i>Pst</i> l	
1553	AACTCATAGCGTGAGATCC	Δ <i>saci0545</i> check primer fw	
1554	ATCCAGCTAATGCATGTTCC	Δ <i>saci0545</i> check primer rev	
	primers for pSVA1017		
1539	CCCC <u>GGATCC</u> GTATTTTCTTAAACCTTC	Δ <i>saci0884</i> upstr fw <i>Bam</i> HI	
1540	TGTCTGCTATACTATAATGTTCACAATATTGTGGT	∆ <i>saci0884</i> upstr rev ol	
1541	AATATTGTGAACATTATAGTATAGCAGACAAAAAA	∆ <i>saci0884</i> downstr fw ol	
1542	CCCC <u>CTGCAG</u> CCATAACTTATCCTTAAT	Δ <i>saci0884</i> downstr rev <i>Pst</i> l	
1601	TTCCTGCCCACTGATATTCC	∆ <i>saci0884</i> check primer fw	
1602.1	CGGTTGGTTAAATCAATTAG	Δsaci0884 check primer rev	
	primers for pET15b_Saci_0545		
1602.2	AAA <u>CATATG</u> ATGTATTGGGTAAAAAAGCATGTC	Saci0545 expr. fw Ndel	
1603.1	AAA <u>GGATCC</u> TCATAAAATCTTCCATTTATCTTTCAT	Saci0545 expr. rev BamHI	
	primers for pSVA1037		
1599	GGG <u>CCATGG</u> CTAACATTGAAGAAACGTATGAG	Saci0884 expr. fw Ncol	
1600	GGG <u>GGATCC</u> TTAGTGGTGATGATGGTGATGTACTATCTCTTCTAT TAGTTGATCGTTCAC	Saci0884 expr. rev <i>Bam</i> HI with His-tag	
	Primers for pSVA1064		
1604	GG <u>CCGCGG</u> CGTCAATTGAATTAAAGTATGG	saci0884 compl fw SacII	
1603.2	GGG <u>CGGCCG</u> CTATACTATCTCTTCTATTAGTTGATCG	saci0884 compl rev Eagl	
	Quantitative RT-PCR primers		
1480	CCTGCAACATCTATCCATAACATACCGA	secY-housekeep-qRT-PCR-fw	
1481	CCTCATAGTGTATATGCTTTAGTAGTAG	secY-housekeep-qRT-PCR-rev	
1424	ACTGCGTCTACTGCGTTATCTTTATC	<i>flaB</i> -qRT-PCR-fw	
1425	GGAGATAAGTCTACACTAGATACACCAGAA	<i>flaB</i> -qRT-PCR-rev	
1426	GCAGTTGAAGAGTTAGCCTTATCTGTG	<i>flaX</i> -qRT-PCR-fw	
1427	CCTACTAACTGACTTACGGTACTAATCT	<i>flaX</i> -qRT-PCR-rev	
1428	CCTGGCTGTAGTGAATTAGATGTAACTG	<i>flaG</i> -qRT-PCR-fw	
1429	GTGTAGTGTATTTCGGTCCAAATGGTCA	<i>flaG</i> -qRT-PCR-rev	
2308	CTCTAACCCTAGCCCTTATTATTGGAC	<i>flaF</i> -qRT-PCR-fw	
2309	GGATACGGAGGATATGGCAGAATGAT	<i>flaF</i> -qRT-PCR-rev	
1432	AGTTGATGTGTATCTTAAGCTCTCGG	<i>flaH</i> -qRT-PCR-fw	

1433	CTGAACCAGATATTCCTCCTGTAGTTTTTA	<i>flaH</i> -qRT-PCR-rev
1434	GGAGAAACCGCATCTGGAAAGACAAC	<i>flal</i> -qRT-PCR-fw
1435	GGAACCGTCAATTCTGGAGTGTCCT	flal-qRT-PCR-rev
1436	CCAGAAAGGAGCAGAACGGTAGG	<i>flaJ</i> -qRT-PCR-fw
1437	GCTATTACCGAAGCCAATTCACCAATC	<i>flaJ</i> -qRT-PCR-rev
4309	TAGTGTCGCTGCTGCTAGAG	<i>soxB</i> -qRT-PCR-fw
4310	ATTGCAGACTGCAGCGTTTG	<i>soxB</i> -qRT-PCR-rev
4311	TGGGTATCTGGTGCTACTTG	cbsA-qRT-PCR-fw
4312	AGCCGTGATTTCCACTATCC	cbsA-qRT-PCR-rev
4313	CCCTAAACGTGCCAAATGAGGG	<i>cbsB</i> -qRT-PCR-fw
4314	CAGAGATGCGGTAATCAATGTC	<i>cbsB</i> -qRT-PCR-rev
4315	AGGCGATTCGAGTGGGAGAC	<i>soxL</i> -qRT-PCR-fw
4316	GGCGGTGTACAACCCAGATG	<i>soxL</i> -qRT-PCR-rev
4317	AGCAGTGTACCTGGGCTATC	<i>soxN</i> -qRT-PCR-fw
4318	CGTAGTGCTCAGCCATGAAG	<i>soxN</i> -qRT-PCR-rev

Strains	Genotype	Source/	
		Reference	
Strains			
DH5a	Escherichia coli K-12 cloning strain l2 f80d/lacZDM15 D(lacZYA-argF)U169 recA1 endA1 hsdR17 (rK2 mK1) supE44 thi-1 gyrA relA1	Gibco	
Rosetta (DE3)	Escherichia coli expression strain	Novagen	
ER1821	Escherichia coli propagation strain F ⁻ glnV44 e14 (McrA ⁻) rfbD1? relA1? endA1 spoT1? thi-1 Δ(mcrC- mrr)114::IS10	New England Biolabs	
MW001	Sulfolobus acidocaldarius DSM639 ΔpyrE	[1]	
MW010	MW001 Δsaci ptp (Δsaci0545)	This work	
MW025	MW001 Δ saci pp2a (Δ saci0884)	This work	
MW156	MW001 $\Delta saci2318$ ($\Delta aapF$)	[2]	
MW455	MW001 Δsaci2318Δsaci1174 (Δ aapF Δ flaH)	[3]	
Plasmids			
pSVA406	Gene targeting plasmid, pGEM-T Easy backbone, <i>pyrEF_{sso}</i> cassette; single crossover method	[1]	
pSVA407	Gene targeting plasmid, pGEM-T Easy backbone, <i>pyrEF_{sso}</i> and <i>lacS_{sso}</i> cassette; single crossover method	[1]	
p∆2 <i>pyrEF</i>	Gene targeting plasmid, pBluescript backbone, <i>pyrEF_{sso}</i> ; single crossover method	[4]	
pSVA1016	In-frame deletion of <i>saci0545(saci_ptp</i>) cloned into p∆2 <i>pyrEF</i> with <i>Bam</i> H, <i>Pst</i> I	This work	
pSVA1017	In-frame deletion of <i>saci0884 (saci_pp2ac</i>) cloned into p∆2 <i>pyrEF</i> with <i>Bam</i> H, <i>Pst</i> I	This work	
pCMalLacS	pRN-1 based shuttle vector with <i>lacSsso</i> reporter gene	[5]	
pSVA1064	Complementation of <i>saci0884</i> (<i>saci_pp2ac</i>) deletion with own promoter, cloned into pCMal instead of <i>lacS</i>	This work	
pETDuet-1	Amp ^r , Car ^r , expression plasmid containing replicon ColE1 (pBR322) and two MCS (MCS1 and MCS2)	Novagen	
pET-15b	Amp ^r , expression plasmid containing N-terminal His-Tag sequence	Novagen	
pSVA1037	<i>saci0884</i> with C-termial His-tag cloned into pETDuet-1 with <i>Ncol,</i> BamHI in MCSI	[6]	
pET15b_Saci_ 0545	<i>Saci0545</i> with N-terminal His-tag cloned into pET15b with NdeI, BamHI	This work	

Table S6. Strains and plasmids used in this study.

Table S7 Supplementary table showing the scores of each phosphorylation site in proteins identified by our method. DISPHOS 1.3 (http://www.dabi.temple.edu/disphos/pred.html) was used to calculate the scores. For unknown reasons DISPHOS 1.3 fails to process the sequences of: Saci_1499, Saci_2190, Saci_2201, Saci_2215, Saci_2331

References

- 1. Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, et al. (2012) Versatile genetic tool box for the crenarchaeote *Sulfolobus acidocaldarius*. Front Microbiol 3:214.
- 2. Henche A-L, Koerdt A, Ghosh A, Albers S-V (2012) Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ Microbiol 14: 779–793.
- 3. Lassak K, Neiner T, Ghosh A, Klingl A, Wirth R, et al. (2012) Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 83: 110–124.
- 4. Wagner M, Berkner S, Ajon M, Driessen AJM, Lipps G, et al. (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus *Sulfolobus*. Biochem Soc Trans 37: 97–101.
- 5. Berkner S, Wlodkowski A, Albers S-V, Lipps G (2010) Inducible and constitutive promoters for genetic systems in *Sulfolobus* acidocaldarius. Extremophiles 14: 249–259.
- 6. Reimann J, Lassak K, Khadouma S, Ettema TJG, Yang N, et al. (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in *Sulfolobus acidocaldarius*. Mol Microbiol 86: 24-36.