THE INHIBITORY EFFECT OF GLUCOSE ON CERTAIN AMINO ACID DEAMINASES¹

WILLIAM L. BOYD AND HERMAN C. LICHSTEIN

Department of Bacteriology and Immunology, University of Minnesota, Minneapolis, Minnesota

Received for publication July 12, 1951

The incorporation of glucose into growth media was observed as early as 1912 (Kendall and Farmer) to decrease markedly the production of ammonia by bacteria. Since that time, it has been learned from studies in which bacteria were grown in the presence of this carbohydrate (Epps and Gale, 1942) that a variety of deaminases are either not produced or are formed in low concentration. These findings have been interpreted as an inhibition of enzyme formation during glycolysis.

The present work was undertaken because of our general interest in the deaminases of aspartic acid, serine, and threonine, and the results obtained suggest that the glucose effect is not primarily on apoenzyme production.

METHODS

Bacterium cadaveris, Gale's strain, and Escherichia coli, strain 86G, were employed. The former was grown in a medium composed of 1 per cent each of pepticase and yeast extract and 0.5 per cent K_2 HPO₄; the latter was cultured in a synthetic mineral salts medium to which 0.5 per cent acid-hydrolyzed vitamin-free casein was added (Billen and Lichstein, 1950). The cells in the foregoing media, with and without from 0.2 to 2 per cent glucose, were incubated for a period of from 16 to 18 hours at 30 C, harvested by centrifugation, washed once, and suspended in distilled water to give a cell concentration of 0.5 to 1 mg of bacterial nitrogen per ml. The deamination experiments were performed at pH 7 in M/20phosphate buffer at 37 C, using adequate controls without added amino acids. These blank values for 60 minutes' incubation time varied between 0 and 5 μ g ammonia nitrogen for the no additions series or in the presence of biotin and adenylic acid, to 5 to 15 μ g in the presence of yeast or liver extract. The values given in the tables have been corrected for these blanks. Ammonia was determined by Nesslerization and color read in a Klett-Summerson photoelectric colorimeter.

EXPERIMENTAL RESULTS

It can be seen from the data given in table 1 that a general reduction of deaminase activity occurs when cells are harvested from a glucose medium. These results confirm the findings of Epps and Gale (1942). It was learned from further experiments (table 2) that a variety of agents known to be involved in the deami-

¹ This investigation was supported in part by RG 2916 from the National Institutes of Health, Public Health Service.

OR CANTEN	AMINO ACID	µG NH: NITROGEN PRODUCED			
URGANISM		Without glucose	With glucose		
Bacterium cadaveris	DL-Aspartic acid	25.8	2.6		
	_	16.1	5.7		
	DL-Serine	20.2	3.0		
	DL-Threonine	38.9	1.3		
	DL-Alanine	19.7	8.0		
Escherichia coli	DL-Aspartic acid	21.5	16.0		
	-	27.0	17.1		
Bacterium cadaveris		24.7	0.9		
		10.7	0		
	DL-Serine	40.0	14.8		
	pl-Threonine	10.2	7.3		
	DL-Alanine	66.7	17.4		

 TABLE 1

 Effect of the presence of glucose in growth medium on deaminase activity

Amino acids added at 0.005 m final concentration, pH 7, 60 min, 0.1 to 0.2 mg bacterial nitrogen per tube.

TABLE 2

Effect of various agents on the deaminase activity of glucose-grown cells

		με NH: NITROGEN PRODUCED									
		No additions		+biotin		+AA		+B + AA		+YE or LE	
		With- out glu- cose	With glu- cose								
Bacterium	DL-Aspartic	65.5	38.5					92.1	68.4	94.2	96.7
cadaveris	acid	66.0	22.2	70.7	27.0	66.0	34.4	76.4	51.1	66.3	58.7
		25.8	2.6	26.4	2.6					48.8	37.1
	DL-Serine	20.2	3.0	21.1	4.2	18.3	7.6	21.8	4.0	38.0	27.6
	DL-Threo- nine	38.9	1.3	37.8	20.0	57.9	17.7	62.7	19.6	50.7	24.3
Escherichia	DL-Aspartic	24.7	0.9	26.4	8.4	30.7	11.3	24.9	7.0	42.3	36.3
coli	acid	10.7	0	14.8	13.9	2.3	1.0	21.6	7.5	23.8	18.9
		33.9	2.3	27.6	12.5			1		45.4	36.5
		21.5	16.0	22.9	20.6	21.2	26.7	31.6	20.6	33.1	30.7

Conditions as for table 1.

Conc of additions: biotin 0.005 μ g/ml

adenylic acid (AA) 50 µg/ml

yeast extract (YE) or liver extract (LE) 0.5 mg/ml.

nases of aspartic acid, serine, and threenine (Lichstein and Umbreit, 1947; Lichstein and Christman, 1948; Lichstein, 1949) increase the activity of the glucose grown cells.

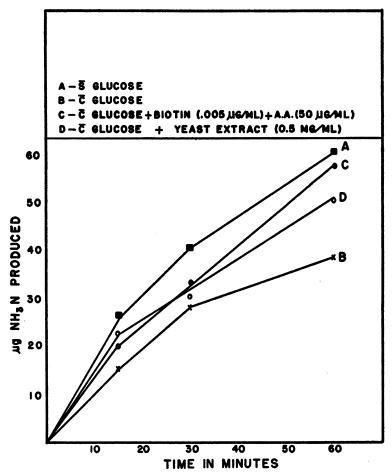


Figure 1. Effect of biotin, adenylic acid, and yeast extract on the aspartic acid deaminase activity of *Bacterium cadaveris*. Conditions as for table 1.

TABLE 3	3
---------	---

Effect of incorporation of various materials into the growth medium on aspartic acid deaminase activity of Escherichia coli

GROWTH CONDITIONS		μg NH3 NITEOGEN PRODUCED							
	1	2	3	4	5	6	7		
Without glucose	55.4	30.5	17.4	20.3	18.6	16.7	26.7		
With glucose	33.6	13.1	4.6	17.4	9.3	4.9	3.2		
With glucose + biotin	42.6	14.5	9.3	27.0					
With glucose + biotin + AA		19.1		25.5					
With glucose + YE 10%					17.7	11.9	11.3		
With glucose + YE 5%				1		8.1			
With glucose + YE 1%					10.7	2.3			
With glucose + YE 0.1%					9.0				

Conditions as for table 1. Biotin = $30 \ \mu g/ml$. Adenylic acid = $100 \ \mu g/ml$. Although only rarely does this recovery equal the activity of cells grown in the absence of glucose, the results are consistent with an interpretation that the presence of glucose during growth somehow either prevents the formation of the coenzyme of these deaminases or causes its destruction. That the glucose effect is not primarily on apoenzyme production may be seen from the data given in figure 1. Since stimulation of activity occurs almost immediately, it is probable that preformed apoenzyme was present in the glucose-grown cells.

In view of these findings it was deemed advisable to ascertain whether or not this glucose effect could be overcome by the incorporation of coenzyme or of coenzyme precursors into growth medium of known glucose content. The results of such experiments are given in table 3. Although none of the agents employed is capable of completely counteracting the effect of glucose, the agents consistently exhibit significant activity, suggesting that a large excess of preformed coenzyme or coenzyme precursors may be able, at least partially, to replace that amount which is either destroyed or not produced.

DISCUSSION

Since it is known that a bacterial cell can lose preformed folic acid under suitable conditions, and that concurrent glycolysis accelerates this phenomenon (Nimmo-Smith *et al.*, 1948; Lichstein and White, 1950), it is perhaps not surprising that a similar phenomenon should exist with biotin.

That the presence of glucose in the growth medium affects primarily the concentration of coenzyme may be inferred from the fact that stimulation by biotin or other agents is in most cases almost instantaneous. It is improbable that these early stimulations could be due to synthesis of protein (apoenzyme). Furthermore, the large amount of preformed coenzyme required in the growth medium to overcome even partially the effect of glucose (table 3, especially numbers 5 and 6) suggests that destruction of coenzyme may be the mechanism.

SUMMARY

The data presented are interpreted as evidence that the coenzyme of aspartic acid, serine, and threonine deaminases is resolved during glycolysis. Activity can be restored significantly by the addition of preformed coenzyme, or of coenzyme precursors, to resting cell suspensions, or by growing the cells in the presence of high concentrations of these agents in the presence of glucose.

REFERENCES

BILLEN, D., AND LICHSTEIN, H. C. 1950 Nutritional requirements for hydrogenase production by *Escherichia coli*. J. Bact., **60**, 311-314.

EPPS, H. M. R., AND GALE, E. F. 1942 The influence of the presence of glucose during growth on the enzymic activities of *Escherichia coli*: Comparison of the effect with that produced by fermentation acids. Biochem. J., **36**, 619-623.

KENDALL, A. I., AND FARMER, C. J. 1912 Studies in bacterial metabolism. J. Biol. Chem., 12, 13-17; 19-21; 215-221; 465-471.

- LICHSTEIN, H. C. 1949 The probable existence of a coenzyme form of biotin. J. Biol. Chem., 177, 125-127.
- LICHSTEIN, H. C., AND CHRISTMAN, J. F. 1948 The role of biotin and adenylic acid in amino acid deaminases. J. Biol. Chem., 175, 649-662.
- LICHSTEIN, H. C., AND UMBREIT, W. W. 1947 Biotin activation of certain deaminases. J. Biol. Chem., 170, 423-424.
- LICHSTEIN, H. C., AND WHITE, J. E. 1950 Studies on the disappearance of folic acid from bacterial cells. J. Bact., 59, 751-754.
- NIMMO-SMITH, R. H., LASCELLES, J., AND WOODS, D. D. 1948 The synthesis of "folic acid" by *Streptobacterium plantarum* and its inhibition by sulphonamides. Brit. J. Exptl. Path., 29, 264-281.