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1. Consistency

This section shows that recursive partitioning based weights lead to consistent estimation of

regression quantiles. We first introduce some notation and regularity conditions, then show that

survival trees are uniformly consistent for conditional survival functions on a certain support.

In order to clearly state the regularity conditions, some concepts from the tree literature are

introduced. Consider the partition Q(n) of the covariate space, i.e., as produced by a tree, then

B
(n)
k is the kth box, or terminal node, of Q(n) such that

⋃
k B

(n)
k = Q(n). Now define the mesh,

or diameter, of the box k as

Dn(k) = sup{||y − z||, such that y, z ε B
(n)
k }, (1.1)

where it is assumed that B
(n)
k is contained within the support of ~x for all k. Define F̂ (t|B(n)

k )

as the within terminal node cumulative distribution estimator for all ~x ε B
(n)
k . We adopt the

following conditions:

A1. For β(τ) in the neighborhood of βo(τ), E[~x~xfT (~xβ(τ)|~x){1−FC(~xβ(τ)|~x)}] is positive def-
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inite.

A2. There exists a constantK~x such that E[||~x||3] 6 K~x. In addition, max16i6n||~xi|| = Op(n
1/2(log n)−1),

and E[~x~x] is a positive definite p× p matrix.

A3. The conditional distribution functions FT (t|~x) and FC(t|~x) have first derivatives with respect

to t, fT (t|~x) and fC(t|~x) respectively, which are uniformly bounded away from infinity. Also,

FT (t|~x) and FC(t|~x) have bounded (uniformly in t) second-order partial derivatives with

respect to ~x.

A4. E[|T |r] <∞ for some r > 1 and Q(n+1) is a refinement of Q(n). Let k(n) be a nondecreasing

sequence of integers which approaches infinity, n1/r log n/k(n), Dn(~x), and I
Ĥn(B

(n)
k )<k(n)/n

approach 0 as n→∞, where Ĥn(B
(n)
k ) is the empirical probability of box k on the sample.

A5. Let ξ > 0 and for any fixed t < ξ, F̂ (t|B(n)
k )→ F (t|Bk), in probability.

Assumptions A1 and A2 are common to the censored quantile regression literature, see for exam-

ple Wang and Wang (2009). Assumptions A3, A4 and A5 imply that the conditional distribution

function converges uniformly in t. Assumption A4 ensures the conditions for theorems needed

from Gordon and Olshen (1984) are satisfied. Assumption A5 requires that the within terminal

node cumulative distribution estimator is pointwise consistent on a subset of the support, where

ξ is typically chosen to ensure a well defined survival distribution.

In Chen et al. (2003), “Theorem 1” states five sufficient conditions for consistency. Condition

(1.3) is satisfied by assumptions while conditions (1.1), (1.2) and (1.5’) are satisfied by identical

arguments used by Wang and Wang (2009). Condition (1.4) requires us to show that survival tree

estimators, denoted F̂T (t|~x), that use a general within node cumulative distribution estimator,
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say F̂ (t|B(n)), is uniformly consistent for FT (t|~x). Define the following quantities as

FY (t|~x) = PY (Y 6 t|~x) = 1− (1− FT (t|~x))(1− FC(t|~x)),

FT1(t|~x) = PT1(T 6 t, δ = 1|~x) =

∫ t

0

(1− FC(u|~x))fT (u|~x)du,

which can be thought as the observed distribution function and observed event distribution

function, respectively. Consider the survival tree partitioning the covariate space into a set of

‘boxes’ denoted by BN . Now define the distribution estimators for FY (t|~x) and FT1(t|~x) as F̂Y (t|~x)

and F̂T1(t|~x), respectively.

For fixed t > 0, define two types of convergence as described in Gordon and Olshen (1984),

(i) E{|F̂n(t|~x, ζn)− F (t|~x)||ζn} → 0, and

(ii) F̂n(t|~x, ζn)− F (t|~x)→ 0, almost surely,

where ζn is the observed data, and the set Ω = {ξ : FY (ξ|~x) < 1 − δ} for δ > 0. Now we can

concisely state the following lemma,

Lemma 1.1 Let the conditional distribution functions FT1(t|~x) and FC(t|~x) be continuous. For

all s 6 ξ, where ξ > 0 is a fixed time, F̂Y (s|~x) and F̂T1(s|~x) are recursive partitioning based

estimators that are type (i) and/or (ii) consistent tree estimators for FY (s|~x) and FT1(s|~x),

respectively, for each single s. Then

∫ ξ

0

dF̂T1(s|~x)

1− F̂Y (s|~x)
→− log{1− FT (ξ|~x)},

almost surely on Ω.

This lemma is Theorem 1 from Butler et al. (1989). Assumptions (A4) and (A5) combined

with either Theorem 3.6 or Theorem 4.1 from Gordon and Olshen (1984) satisfy the conditions

for Lemma 1.1. Now define “Lemma 1” from Breslow and Crowley (1974),
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Lemma 1.2 Let N(t) = ΣNi=1I[Yi > t] be the number of individuals still “at risk” at time t. Then

with probability 1, for all 0 < t < max16i6NYi,

0 < − log{1− F̂T (t|~x)} −
∫ τ

0

dF̂T1(s|~x)

1− F̂Y (s|~x)
<
N −N(t)

N ·N(t)
.

Lemma 1.1 and Lemma 1.2 imply that for all t ε Ω,

− log{1− F̂T (t|~x)} → − log{1− FT (t|~x)},

as N(t)→∞. This means that F̂T (t|~x)→ FT (t|~x) at all the continuity points of FT on Ω. Thus,

by definition,

F̂T (t|~x)→D FT (t|~x),

in distribution. By problem 1.6 of Ferguson (1996), convergence in law with previously stated

conditions implies uniform convergence which satisfies condition (1.4) of Chen et al. (2003). This

completes the proof for consistency.

2. Simulation Extensions

The simulation study presented in the paper illustrated the potential of tree based weighting

compared to current methods. While designing the simulations, we ran into interesting issues

regarding censored quantile regression in general, and situations that are better for using tree

based weights for censored quantile regression. The paper introduced and summarized these

issues, but we present and discuss them in more detail here. In particular, we first discuss the

effect of the censoring distribution on the weights used in (2.3), then intuition is introduced for

the better performance of tree based weights for quantiles of interest further from the marginal

censoring rate. In Supplementary Section 2.3, smooth estimators of the conditional distribution

function are considered, while the effect of mild non-linearity is investigated in Supplementary

Section 2.4. Finally, results using a larger sample size are presented. All table references refer to
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the Supplementary Materials unless stated otherwise.

2.1 Reweighting Effect

A small simulation study was performed to evaluate the effect of the censoring location on bias

and mean squared error (MSE), and the proportion of reweighted observations that are reweighted

for each situation. These simulations are univariate versions of the ones presented in section 4 of

the main paper. In particular, we introduce non-linearity in all quantiles except the quantile of

interest through a quadratic error term. In particular,

ti = 2 + xi + (
1

2
+ c · (xi −

1

2
)2)(N(0, 1)− Φ−1(τ)),

xi ∼ N(0, 1).

We consider two types of censoring: an unconditionally independent form of censoring and a

conditionally independent (on xi) form of censoring. Let ci,1 and ci,2 be the censoring times for

unconditionally independent censoring and conditionally independent censoring, respectively,

ci,1 ∼ Unif(a1(s, l), b1(s, l)),

ci,2 ∼ Unif(a2(s, l), b2(s, l))× (1 + (xi −
1

2
)2),

where ak(s, l) and bk(s, l) are chosen to ensure 35% censoring, and s and l denote the severity of

non-linearity and location of censoring, respectively.

The results (Table 1) suggest that the bias of Portnoy’s estimator does not change with the

censoring distribution when the linearity assumption in all quantiles is satisfied, but the bias can

vary radically when non-linearity is present and the differences increase with the degree of non-

linearity. Note that the bias is typically the least when the censoring is ‘middle’ located. There

is limited intuition for this observation. Although, there the censored observations that require

reweighting, i.e., FT (ci|~xi) < τo, is probably clearer when the censoring is not concentrated

around the quantile of interest.
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2.2 Higher Censoring Effect on Median

Simulations similar to the ones described in Section 4 are presented in Tables 2 and 3 for the

median. The only difference is that a(Ck, El) was chosen to ensure 35% instead of 25% censoring.

The results show that the bias for the tree based estimator increases with increased censoring.

This increased bias is similar or slightly larger than the Portnoy and/or PH estimator’s bias,

but the three methods perform similarly for mild non-linearity. For severe non-linearity, the tree

based estimator performs better than the Portnoy and PH estimators.

This observation makes intuitive sense. In particular, our stopping rules strictly require that

the quantile of interest is defined by setting the minimum number of events to the number at

risk within a node times the quantile of interest. When the marginal censoring level is close to

the quantile of interest, then the set of potential splits is substantially reduced. The survival tree

will become closer to an univariate Kaplan-Meier when the number of potential splits is small. A

potential solution would set the minimum number of events and a direct condition that requires

the quantile of interest to be defined.

2.3 Using Smooth Local Kaplan-Meier Estimators

As pointed out by a reviewer, smooth estimators, e.g., hazard regression with splines, may be

more efficient at estimating the conditional distribution function. This idea is close in spirit to the

Wang and Wang (2009) (WW) estimator that uses kernel estimators to smooth the Kaplan-Meier

estimator across covariates. We implemented the WW estimator for the two variable simulations

presented in the paper (Section 4, Table 1). A product kernel, i.e., K(x1, x2) = K1(
x1−x1,o

h1
) ×

K2(
x2−x2,o

h2
), was used with bandwidths determined on one simulated dataset with five-fold cross-

validation.

Table 4 presents similar results when the global linearity assumption is satisfied, but the

results are underwhelming when the global linearity assumption is violated. Since the bandwidth
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was determined in an ad-hoc fashion that did not adapt to each simulation, these results could

almost surely be improved. Unfortunately, the computational requirements to search for tuning

parameters across multiple dimensions are too intensive to do across every simulation iteration.

Additionally, the three variable scenario considered in the paper presents substantially issues for

the WW estimator due to the discrete covariate.

Wey (2011) conducted several similar simulations that included the WW estimator; a uni-

variate scenario is introduced here

ti = 2 + xi + (
1

5
− 6 · (xi −

1

2
)2)(N(0, 1)− Φ−1(τ)),

xi ∼ N(0, 1),

ci ∼ Unif(0, 8).

Only consider the median, set n = 200, minimum at risk is 8 and minimum events the number

of observations at risk in a node times the quantile of interest. As Table 5 shows, the tree based

estimator does substantially better than the Portnoy and PH estimators.

2.4 Effect of Mild Non-Linearity

The scenarios presented in the paper possess severe non-linearity, but simulations with mild non-

linearity displayed similar results. Considering the simulation scenario considered in the paper,

the error term that induces mild non-linearity is 3
2 +2 ·(xi,1− 1

2 )2 while the censoring distribution

is C ∼ ( 3
10 + (xi,1 − 1

2 )2) × Unif(−3.75, a(Ωk, El)). The results (Table 6) indicate that the tree

based estimator possesses less bias when estimating the median, while the tree based estimator

performs similar to the Portnoy and Peng, Huang estimators for τ = 0.25.
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2.5 Large Sample Simulations

The simulations presented in Section 4 are extended with twice the sample size (N = 800). Ta-

bles 7 and 8 present the results for the two and three variable simulation scenarios, respectively.

Generally, the tree based estimator experiences a small reduction in bias, particularly for scenar-

ios possessing non-linearity. The Portnoy and PH estimators continue to experience significant

difficulties with the non-linearity scenario, while the three estimators are nearly equivalent for

the linear in all quantiles scenario. Additionally, the proposed estimator possesses better coverage

probabilities than the Portnoy and PH estimators. Overall, the tree based estimator continues

to perform better than the Portnoy and PH estimators when the global linearity assumption is

violated.

3. Extending the PBC Analysis

This section focuses on two things: describing how to use the bagged trees to estimate the condi-

tional quantile function, then analyze the validity of the linearity assumption in all quantiles up

to, and including, the quantile of interest using the bagged survival tree.

A reviewer pointed out that bagged survival trees can be used to non-parametrically estimate

the conditional quantile function. It is important to point out that without the stopping rules

considered in this paper, then the estimated quantile function from traditional bagged survival

trees are not guaranteed to be defined (i.e., ill-defined survival function). This non-parametric

estimate can only be used for prediction. If we want to determine covariate associations with the

event distribution T , then additional steps are required. Following Rudser et al. (2012), quantile

time (for τ) for each observation in the data set is predicted. Let the predicted time for the ith

subject be q~xi
(τ). Then the marginal linearity of the covariates is checked by using an univariate

smoother (without controlling for other covariates). By using a smoother on ~q~x(τ), we obtain the
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marginal quantile function for x as

Q̂T (τ |x) = ĝτ (x),

where g is a smooth function and x is a single covariate being checked (e.g., ĝ kernel smoothes

across ~q~x(τ)).

To non-parametrically estimate the conditional quantile function for the PBC data set, local

linear regression is used to marginally estimate g for age, bilirubin, and prothrombin time. The

bandwidth is chosen using generalized cross-validation. Figure 3 presents the results for three

quantiles up to τ = 0.25. There exists obvious non-linearity for bilirubin and prothrombin time.

Attenuated non-linearity remains for bilirubin for τ = 0.25, while prothrombin time is nearly

linear by τ . Age remains linear throughout the quantiles considered. These results suggest that

the Portnoy (2003) and Peng and Huang (2008) estimators may be inappropriate for the PBC

data set due to non-linearity in all quantiles. Some care is advised as the marginal interpretation

is a significant limitation of this approach.
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Conditionally
Independent Censoring Independent Censoring

Non-Linearity Metric Late Mid Early Late Mid Early

No Non-Linearity

Bias 0.03 0.04 0.04 0.04 0.04 0.04
MSE 0.66 0.78 0.83 0.68 0.85 0.87

Total Percent (Re-weighted) 10.2 24.8 27.4 16.5 23.3 18.4
Relative Percent (Re-weighted) 31.1 72.2 83.3 47.0 80.0 83.7

Mild Non-Linearity

Bias -0.11 -0.06 0.12 0.06 0.02 0.09
MSE 0.18 0.23 0.32 0.23 0.25 0.31

Total Percent (Re-weighted) 8.1 19.7 23.6 16.9 23.0 27.1
Relative Percent (Re-weighted) 25.5 58.8 90.9 49.2 66.8 91.4

Severe Non-Linearity

Bias -0.11 -0.09 0.32 0.17 0.02 0.26
MSE 0.67 0.86 1.44 0.96 1.00 1.33

Total Percent (Re-weighted) 7.4 17.1 28.3 6.3 18.1 29.6
Relative Percent (Re-weighted) 22.5 51.4 91.8 20.0 54.3 86.7

Table 1. Effect of Censoring Locations: N = 400, NSIM = 2500, censoring = 35%, β0 = 2, β1 = 1. Recall
only censored observations can be reweighted.

[]
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No Non-Linearity Severe Non-Linearity
Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

τ = 0.5

Portnoy 0.00 0.03 0.96 0.74 1.00 0.10 0.56 0.95 2.94 0.32
Variable 1 PH 0.00 0.04 0.96 0.76 1.00 -0.08 0.57 0.95 2.99 0.23
β1 = 1 TW -0.01 0.03 0.97 0.75 1.00 0.11 0.56 0.96 3.00 0.33

Portnoy 0.00 0.05 0.96 0.88 1.00 -0.24 0.24 0.94 1.84 1.00
Variable 2 PH 0.00 0.05 0.97 0.89 1.00 -0.29 0.29 0.93 1.95 1.00
β2 = −2 TW 0.04 0.05 0.97 0.89 1.00 -0.13 0.25 0.97 2.04 1.00

Table 2. Simulation Scenario for High Censoring (2 covariates): N = 400, NSIM = 2500, censoring =
35%, β0 = 2, β1 = 1, β2 = −2, 300 bootstrap replicates, 95% nominal coverage with ECL representing
the average CI width.

No Non-Linearity Severe Non-Linearity
Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

τ = 0.5

Portnoy -0.01 0.04 0.96 0.77 1.00 0.12 0.62 0.95 3.06 0.30
Variable 1 PH -0.01 0.04 0.96 0.78 1.00 -0.05 0.61 0.96 3.12 0.22
β1 = 1 TW -0.01 0.04 0.97 0.78 1.00 0.10 0.61 0.95 3.13 0.30

Portnoy -0.01 0.05 0.96 0.90 1.00 -0.24 0.28 0.94 2.00 0.99
Variable 2 PH -0.01 0.05 0.96 0.91 1.00 -0.28 0.33 0.93 2.11 0.99
β2 = −2 TW 0.01 0.05 0.97 0.91 1.00 -0.17 0.29 0.96 2.19 0.99

Portnoy 0.00 0.05 0.97 0.93 0.99 0.11 0.23 0.96 2.01 0.62
Variable 3 PH 0.00 0.05 0.97 0.94 0.99 0.13 0.26 0.96 2.14 0.60
β3 = 1 TW 0.00 0.05 0.98 0.93 0.99 0.08 0.23 0.97 2.09 0.59

Table 3. Simulation Scenario for High Censoring (3 covariates): N = 400, NSIM = 2500, censoring
= 35%, β0 = 2, β1 = 1, β2 = −2, β3 = 1, 300 bootstrap replicates, 95% nominal coverage with ECL
representing the average CI width.

No Non-Linearity Severe Non-Linearity
Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

τ = 0.25
Variable 1 WW -0.04 0.04 0.96 0.79 1.00 0.24 0.64 0.95 3.02 0.34
Variable 2 WW 0.09 0.06 0.94 0.93 1.00 0.23 0.23 0.93 1.80 0.99

τ = 0.5
Variable 1 WW -0.03 0.03 0.96 0.69 1.00 0.13 0.48 0.95 2.71 0.39
Variable 2 WW 0.06 0.04 0.95 0.80 1.00 0.14 0.13 0.94 1.41 1.00

Table 4. Simulation Scenario for the Wang and Wang (2009) estimator (2 covariates): N = 400, NSIM =
2500, β0 = 2, β1 = 1, β2 = −2, 300 bootstrap replicates, 95% nominal coverage with ECL representing
the average CI width. Censoring is approximately 25% and 35% for τ = 0.5 and τ = 0.25, respectively.

Method Bias MSE Cov. ECL Power
Portnoy -0.10 0.49 0.95 2.75 0.23
PH -0.40 0.63 0.91 2.73 0.14
TW -0.10 0.32 0.95 2.25 0.35
WW 0.00 0.33 0.96 2.30 0.45

Table 5. Motivating Univariate Simulation Scenario: N = 200, NSIM = 2500, censoring = 36%, β0 = 2,
β1 = 1, 300 bootstrap replicates, 95% nominal coverage with ECL representing the average CI width.



12 REFERENCES

Two Variable Scenario Three Variable Scenario
Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

0.25

Variable 1 Portnoy 0.07 0.15 0.96 1.51 0.81 0.06 0.15 0.95 1.54 0.78
β1 = 1 PH 0.00 0.14 0.96 1.50 0.76 -0.01 0.15 0.95 1.53 0.73

TW -0.03 0.13 0.96 1.47 0.76 -0.05 0.14 0.96 1.51 0.72
Variable 2 Portnoy -0.07 0.09 0.96 1.20 1.00 -0.06 0.09 0.97 1.26 1.00
β2 = −2 PH -0.09 0.09 0.96 1.20 1.00 -0.08 0.09 0.97 1.26 1.00

TW 0.03 0.09 0.97 1.21 1.00 0.02 0.09 0.97 1.29 1.00
Variable 3 Portnoy 0.03 0.09 0.97 1.27 0.91
β3 = 1 PH 0.04 0.09 0.96 1.27 0.92

TW -0.09 0.09 0.97 1.23 0.88

0.5

Variable 1 Portnoy 0.05 0.11 0.96 1.32 0.89 0.05 0.11 0.95 1.33 0.88
β1 = 1 PH -0.01 0.11 0.96 1.33 0.84 -0.02 0.11 0.96 1.34 0.82

TW 0.02 0.11 0.96 1.33 0.86 0.01 0.11 0.96 1.34 0.86
Variable 2 Portnoy -0.05 0.05 0.97 0.95 1.00 -0.04 0.06 0.95 0.98 1.00
β2 = −2 PH -0.06 0.06 0.97 0.97 1.00 -0.05 0.06 0.95 1.00 1.00

TW -0.02 0.06 0.97 0.98 1.00 -0.02 0.06 0.96 1.02 1.00
Variable 3 Portnoy 0.01 0.06 0.97 1.00 0.98
β3 = 1 PH 0.01 0.06 0.97 1.03 0.98

TW 0.01 0.06 0.97 1.03 0.98

Table 6. Simulation Scenario for Mild Non-Linearity (2 and 3 covariates): N = 400, NSIM = 2500,
censoring = 25%, β0 = 2, β1 = 1, β2 = −2, β3 = 1, 300 bootstrap replicates, 95% nominal coverage with
ECL representing the average CI width.

No Non-Linearity Non-Linearity
Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

0.25

Variable 1 Portnoy 0.00 0.02 0.96 0.58 1.00 0.13 0.35 0.94 2.27 0.51
β1 = 1 PH 0.00 0.02 0.96 0.59 1.00 -0.02 0.33 0.95 2.28 0.39

TW -0.03 0.02 0.96 0.58 1.00 0.01 0.31 0.95 2.22 0.46
Variable 2 Portnoy 0.00 0.03 0.96 0.68 1.00 -0.19 0.15 0.93 1.38 1.00
β2 = −2 PH 0.00 0.03 0.96 0.69 1.00 -0.23 0.17 0.92 1.42 1.00

TW 0.07 0.03 0.95 0.68 1.00 0.05 0.11 0.97 1.37 1.00

0.5

Variable 1 Portnoy 0.00 0.02 0.95 0.50 1.00 0.09 0.27 0.94 1.99 0.58
β1 = 1 PH 0.00 0.02 0.95 0.51 1.00 -0.04 0.27 0.94 2.01 0.48

TW 0.00 0.02 0.95 0.50 1.00 0.04 0.28 0.94 2.03 0.56
Variable 2 Portnoy 0.00 0.02 0.95 0.58 1.00 -0.13 0.09 0.92 1.05 1.00
β2 = −2 PH 0.00 0.02 0.96 0.59 1.00 -0.15 0.09 0.92 1.09 1.00

TW 0.01 0.02 0.96 0.59 1.00 -0.02 0.07 0.96 1.07 1.00

Table 7. First simulation scenario: N = 800, NSIM = 2500, censoring is 45% and 25% for τ = 0.25 and
τ = 0.5, respectively, β0 = 2, β1 = 1, β2 = −2, 300 bootstrap replicates, 95% nominal coverage with ECL
representing the average CI width.
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No Non-Linearity Non-Linearity
Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

0.25

Variable 1 Portnoy 0.00 0.02 0.96 0.59 1.00 0.14 0.38 0.94 2.34 0.48
β1 = 1 PH 0.00 0.02 0.96 0.60 1.00 -0.02 0.35 0.95 2.34 0.38

TW -0.02 0.02 0.97 0.60 1.00 0.00 0.34 0.95 2.32 0.41
Variable 2 Portnoy 0.00 0.03 0.96 0.69 1.00 -0.15 0.14 0.94 1.46 1.00
β2 = −2 PH 0.00 0.03 0.97 0.70 1.00 -0.19 0.16 0.94 1.50 1.00

TW 0.05 0.03 0.96 0.70 1.00 0.05 0.12 0.97 1.45 1.00
Variable 3 Portnoy 0.00 0.03 0.96 0.71 1.00 0.09 0.13 0.96 1.45 0.88
β3 = 1 PH 0.00 0.03 0.96 0.72 1.00 0.11 0.14 0.96 1.49 0.88

TW -0.07 0.03 0.95 0.70 1.00 -0.13 0.11 0.96 1.32 0.80

0.5

Variable 1 Portnoy 0.00 0.02 0.96 0.51 1.00 0.09 0.29 0.95 2.05 0.55
β1 = 1 PH 0.00 0.02 0.96 0.52 1.00 -0.05 0.28 0.95 2.07 0.44

TW 0.00 0.02 0.96 0.51 1.00 0.03 0.28 0.96 2.08 0.52
Variable 2 Portnoy 0.00 0.02 0.95 0.59 1.00 -0.11 0.08 0.95 1.11 1.00
β2 = −2 PH 0.00 0.02 0.95 0.60 1.00 -0.13 0.09 0.95 1.15 1.00

TW 0.01 0.02 0.96 0.60 1.00 -0.02 0.08 0.96 1.14 1.00
Variable 3 Portnoy 0.00 0.02 0.95 0.61 1.00 0.05 0.08 0.96 1.12 0.96
β3 = 1 PH 0.00 0.02 0.95 0.62 1.00 0.06 0.08 0.96 1.16 0.95

TW 0.01 0.02 0.96 0.62 1.00 0.01 0.07 0.96 1.13 0.95

Table 8. Second simulation scenario: N = 800, NSIM = 2500, censoring is 45% and 25% for τ = 0.25
and τ = 0.5, respectively, β0 = 2, β1 = 1, β2 = −2, β3 = 1, 300 bootstrap replicates, 95% nominal
coverage with ECL representing the average CI width.
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Fig. 1. The marginal quantile relationships for age, log(bilirubin), and prothrombin time. The quantile
functions were estimated using the bagged survival trees (bagN = 10).
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