

Fig. S1

Supplemental Figure 1. miR-155^{-/-} and 155^{FOE} mice have an intact NK cell compartment at baseline. (A) The lymphocyte compartment of miR-155^{-/-} mice demonstrates slight alterations in B and T cell percentages, but no significant differences in absolute number, and no alterations in NK cell percentage or number. N=8-12 mice per group, from 3 independent experiments. (B) NK cells from miR-155^{-/-} mice exhibit similar expression of NKG2A, combined NKG2C, A, E, and IL-18R1 compared to WT controls. (C) NK cells from miR-155^{-/-} mice exhibit normal maturation in the spleen, liver, bone marrow and lung, compared to littermate controls as defined by CD27 and CD11b. Stage 1: CD27 CD11b, Stage 2 CD27 CD11b, stage 3: CD27 CD11b+, stage 4: CD27 CD11b⁺. Shown are representative spleens (top) and summary data (bottom) from N=7-10 mice per group from at least 3 independent experiments. (D) The NK cell Ly49 repertoire is slightly altered in miR-155^{-/-} and 155^{FOE} mice, with miR-155^{-/-} NK cells exhibiting significantly decreased Ly49G2 and modestly increased Ly49A percentages, and 155^{FOE} NK cells exhibiting increased Ly49G2 percentages. Ly49C/I, Ly49D, and Ly49H expression are similar in NK cells from miR-155^{-/-} and control mice. Of note, the ligands for Ly49G2 are not present in C57Bl/6 mice, and are thus unlikely to affect NK cell responses in this genetic model. Neither Ly49G2 or Ly49A are direct targets of miR-155. N=8-28 mice per group, from 2-8 independent experiments. (E) NK cells from miR-155^{-/-} mice exhibit no difference in survival, as measured by 7-AAD positivity, after IL-15 culture, compared to WT controls, after culture in cRPMI without IL-15, with 5ng/mL rmIL-15, or 100ng/mL rmIL-15 for 24, 48, or 72 hours. N=6 mice per group from 2-3 independent experiments. (F) NK cells from WT or miR-155^{-/-} mice were cultured in rmIL-15 for 24, 48, or 72 hours and assayed for intracellular granzyme B expression by flow cytometry. A significantly higher proportion of miR-155^{-/-} NK cells were positive for GzmB protein following activation. Data shown are mean ± SEM percent GzmB positive NK cells, and summarize at least 8 mice per group from 3 independent experiments. (G) miR-155^{-/-} NK cells also had increased degranulation (surface CD107a) after activating NK receptor ligation (anti-NK1.1). NK cells were cultured for 6 hours with plate-bound α -NK1.1, and then assayed for cell surface CD107a by flow cytometry as a surrogate of degranulation. These data are mean ± SEM normalized CD107a⁺ NK cells from at least 12 mice per group from 4 independent experiments. (H) NK cells from miR-155^{-/-} mice do not display enhanced killing. (I) Ly49G2 and Ly49A expression does not determine IFN-y responsiveness in 155^{-/-} NK cells. (J-K) No differences in licensing were detected between 155^{-/-} and WT NK cells. Licensing ratio is indicated in lower part of upper right quadrant. (L) NK cell percentages and numbers are equivalent in the spleens of miR-155^{FOE} and WT mice. Left: Representative flow plots. Middle: Summary data showing the percentage of NK cells is the same in miR-155^{FOE} and WT mice. Right: Summary data showing the absolute number of NK cells in the spleen is the same in miR-155^{FOE} and WT mice. (M) Representative bivariate flow plots showing similar NK cell maturation as defined by CD27 and CD11b in miR-155^{FOE} and WT mice. (N) Summary data showing similar NK cell maturation (mean + SEM percentage of each stage) in miR-155^{FOE} and WT mice. N=2-4 mice per group from 2-3 independent experiments. (O) # of NK cells after culture for 3 days in 100ng/mL IL-15, normalized to input. N = 3 groups of mice from 2 independent experiments. (P) Further surface phenotyping of resting miR-155KO and miR-155FOE NK cells. N = 4-5 mice per genotype from 2 independent experiments.

Supplemental Figure 2. LV-GFP/155 transduced human and mouse NK cells produce more IFN-γ due to increased IFN-γ+ percentages and increased IFN-y MFI. Human (A-C) and mouse (D-F) NK cells were transduced as in (Fig. 2), and then analyzed by flow cytometry for IFN- γ production. Shown is a representative donor for human transduction, stimulated with media only, K562 / 12+15, 12+15, or 12+18 (A), and summarized MFI (B) and %IFN- γ^+ (C). Similarly, a representative mouse sample is shown, in which NK cells were transduced, GFP⁺ NK cells were sorted, and stimulated with plate bound α -NK1.1, 12+15, or 12+18 (D), with summarized MFI (E) and %IFN-γ* (F). Data in (A-C) are representative of 8-10 donors from 4 independent experiments. Data in (D-F) are representative of 4-6 pools of 2-4 mice each from 4-6 independent experiments. (G) Human NK cells transduced similarly to (A-C), but stimulated 4 days after culture. Data are from 5 donors in 2 independent experiments. (H) Data from Fig. 2 12+15, normalized to each donor. (I) Number of cells obtained 9 days after transduction with the indicated viruses. (J) Surface repertoire analysis of transduced NK cells from 7 donors in 3 independent experiments.

Α

RISC Incorporation Ratio (WT/155^{-/-})

Supplemental Figure 3. Supplemental data for RISC-Seq. (A) Schematic of RISC-Seq, a technique used to identify NK-specific miR-155 targets. First, sorted NK cells are lysed, and separated into two fractions: 1) The RISC-IP fraction, which is immunoprecipitated using anti-Ago2 antibodies, and 2) the total RNA fraction. RNA from both fractions is isolated using Trizol, and then sequenced using an Illumina RNA-seq pipeline. The sequences are aligned to the transcriptome, and mRNAs enriched in the RISC are identified. **(B)** When filtered using TargetScan results for an irrelevant miRNA, no enrichment is observed of the Group 1 (>1.2 RISC Incorporation Ratio) transcripts. **(C)** Quantification of the fold change of the graph in (B). **(D)** The targets in the Lymphocyte (T Cell) Signaling Pathway that exist in our data set are highly enriched in the increased RISC Incorporation Ratio fraction of transcripts.

Fig. S3

Supplemental Figure 4. Model for miR-155's role in NK cells. (A) A summary of the effects of miR-155 alterations on a population of stimulated NK cells. Black = unactivated, blue = activated with low IFN- γ production, red = activated with high IFN- γ production.