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Figure 1: Distribution of sequence coverage of targeted exons for 54 tumour and normal exome capture
libraries. Median of median coverage over targeted exons over all libraries was 60.5x.
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Figure 2: Distribution of the number of mutations per sample as it relates to cellularity according to pathol-
ogist review
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Figure 3: Somatic copy number aberration (CNA) landscape of triple negative breast cancers. (a) The
somatic CNA landscape of Basal (top) and Other (bottom) triple negative cancers showing significant seg-
mental CNA instability across the genome. The frequency alteration of each gene by Ensembl54 annotation
is shown where deletions (blue) are reflected as negative frequencies and gains (red) are shown as posi-
tive frequencies. (b) Comparison of genomic instability between Basal and non-Basal cancers for each of
the alteration states. Comparisons are shown as boxplots of the distribution of proportion of the genome
altered for each CNA state over the population of 80 tumours that were classifiable by PAM50. All states
except HLAMPs showed a statistically higher proportion of alteration in Basals than Others. (c)Proportion
of homozygous somatic SNV mutations overlapping segmental CNAs, segregated by state. (d) RNASeq
derived gene fusions supported by segmental CNA breakpoints in Basal (left) and Other (right) cancers
depicted as circos diagrams. Chromosomes are arrayed around the circle and arcs between points on the
circle represent gene fusions predicted by defuse [1].
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Figure 4: The somatic CNA landscape of Basal (top) and Other (bottom) triple negative cancers from an
external cohort of 122 TNBC tumours. The frequency alteration of each gene by Ensembl54 annotation is
shown where deletions (blue) are reflected as negative frequencies and gains (red) are shown as positive

frequencies. Patterns of alteration were consistent with the cohort of 104 TNBCs featured in this study. sigrona eq METABRIC)



Figure 5: Predicted intragenic homozygous deletions in PARK2 on chr6g26 inferred from Affymetrix SNP
6.0 arrays. Predictions for 6 cases are shown where vertical grey bars denote the boundaries of PARK2.
Orange box on the ideogram (bottom right) indicates the genomic coordinates of the view. Each datapoint
corresponds to the log ratio of representing total copy number. Bright green points indicate homozygous
deletions inferred by segmentation by HMM-Dosage (Supplemental methods). Dark green points are pre-
dicted hemizygous regions and blue points are predicted neutral regions.

Figure 6: Examples of four (multi-page PDF) somatic mutation-associated alternative splicing events in-
dicated on the distribution of canonical and alternative exon junction usage. Specific cases that have a
donor/acceptor dinucleotide splice site mutation are indicated as red dots. Distributions are shown for
splice site mutation events in TP53, PIK3R1, LAMA2 and LAMB1. In all examples, cases harbouring a
mutation in the splice sites show outlying alternative junction usage.

Figure 7: List of deleterious variations occurring within RB predicted for the triple negative breast cancer set.
The coordinates of the variations and of functional TFBS predicted with the reference sequence (without
variation) are provided in the hg18 assembly. The most proximal gene is based on Ensembl annotation
(release 63). In the two columns with sequences, the red nucleotides indicate a variation position. The last
column highlights the variant position within the TFBS logo (red rectangle). The data are ranked by the
ratio of the relative scores. The lower this value, the greater the predicted alteration to the recognition of the
sequence by the TF. The rows with bold text reflect the most damaging impact predicted (ratio of relative
score lower than 0.9 - see Supplemental methods).

Figure 8: Clustering of extreme CNA event (HOMD, HLAMP) into gene modules and functional pathways by
Reactome analysis. Nodes in the network are genes affected by a high level amplification or homozygous
deletion. Size of the node is proportional to the frequency of abberation in the population of 104 tumours.
Edges between nodes represent protein interactions as described in the Reactome Fl database [2]

Figure 9: Ab-initio clustering of the mutational profiles of cases and pathways. Pathway-based features
were calculated based on the frequency of mutation in each pathway for a given case. Conservatively,
we included 48 pathways showing enrichment from the entire network for further analysis (Table S14)
containing 40 somatically mutated genes. For each tumour, we counted the number of times a gene in
a given pathway was found to be mutated, producing a tumour-pathway matrix. Hierarchical clustering
reveals a population structure where distinct groupings of cases by their pathway-based mutational profiles
are evident. Annotations of the number of mutations in each case (scaled in blue), the PAM50 subtype
and TP53, Rb1 and PTEN mutation status are shown across the top of the heatmap. Rows in the matrix
correspond to pathways shown in Figure 3b. The relationship between genes and pathways in this analysis
is such that a small number of highly connected gene nodes (drivers) will implicate many pathways, however
the strength of pathway association is also modified by the presence of additional mutated genes, shown
as a grayscale for each tumour-pathway data point.

Figure 10: Probabilistic graphical model of a Dirichlet process for clonal frequency estimation. Left the
random variables in the model are shown as nodes in a graph where shade nodes are observed quantities
and unshaded nodes are unobserved quantities we wish to estimate. The model inputs the total number of
reference and variant reads at the mutation of interest, the observed copy number at the genomic position of
each mutation i and then infers the genotype of the mutation (G;), the clonal frequency (¢;) and the number
of variant reads belonging to each clone (4!, Di ). The conditional probability distributions for the model
are shown (right).
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Figure 11: Clonal frequency analysis for all tumours with 10 more mutations in the TNBC cohort (multipage
PDF). This figure shows on alternating pages, the clustering of the co-occurrence matrix for mutations to
infer the assignment to clonal clusters and on the subsequent page the full inferred posterior distributions
of the clonal frequency estimates as output from 2500 runs of the MCMC sampling of the Dirichlet process
model. The mutations in the distribution plots are first ordered by the average clonal frequencies over each
group of mutations. The mode of the clonal frequency estimate for each mutation is shown with a grey dot.

Figure 12: Distribution of clonal frequencies across all mutations (adjusted for predicted normal contami-
nation). Specific clonal frequencies are shown for TP53 mutations and PIK3CA mutations and reveals that
the distribution of TP53 mutation is incompatible with the notion that it is always the founder mutation (and
therefore present in all cells). Instead the distribution is skewed in favour of TP53 residing in a dominant
proportion of cells, but exhibits a tail suggesting that in some tumours it occurs later in the evolution of the
cancer.
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Supplemental Methods for Shah et al: The clonal and
mutational evolution spectrum of primary triple negative
breast cancers

1 Biospecimen collection and ethical consent

We assembled a collection of 149 clinically annotated primary fresh frozen triple negative breast cancer
specimens (n = 149) each with a source of matched non malignant tissue for extraction of germline rep-
resentative DNA. Tumour specimens were obtained from three tumour banks (BCCA Vancouver, breast
tumour tissue repository; Alberta CBCF Breast Tumour Bank Edmonton, Cambridge UK, Addenbrooke’s
Hospital breast tumour bank) each with local REB/IRB approval for genomic studies of nucleic acids from
breast cancer patients. This project was conducted under local BCCA REB/IRB projects H06-00289, HO8-
1230, H06-3199. The source of germline DNA was from peripheral blood lymphocytes in all but 4 cases.
In these 4 cases histologically normal adjacent breast tissue was used. Initial case selection was based
on clinical immunohistochemistry to define primary triple negative breast cancers obtained from surgical
specimens, prior to the initiation of any chemotherapy or radiotherapy. Tumours typed as ER-, HER2- and
PR- were initially selected for further review and re-validation of the IHC.

2 Histopathological review

Tissue sections were subject to expert histopathological review (GT) to assess the presence of invasive
tumour, pre-malignant or benign changes, lymphocytic infiltration, necrosis and tumour cellularity. Tumour
cellularity was scored visually in a semiquantitative fashion on sections taken from the cryosectioning runs
used to isolate nucleic acids from each tumour. Cellularity values were binned such that ‘low cellularity’ cor-
responds to samples with <40% malignant cells, ‘moderate cellularity’ corresponds to 40% - 70% malignant
cells, and samples with >70% malignant cells were considered to have ‘high cellularity’. All but one sample
classified as low cellularity were excluded from further analysis. The ER-, PR- HER2- immunophenotype
was reconfirmed on sections or TMA cores from the cases included for analysis and additionally CK5/6 and
EGFR were assessed by IHC. Subsequently SNP6.0 copy number analysis was also used to confirm the
absence of HER2 amplification in each case.

3 Sequence data generation

Paired end RNASeq libraries were generated as described in Wiegand et al [1]. Exome capture was
achieved through solution hybrid selection with the Human All Exon kit SureSelect Target Enrichment Sys-
tem (Agilent) version 1 for lllumina Genome Analyzer paired-end sequencing [2] and libraries were prepared
as described in [3]. SOLID whole genome shotgun libraries for 15 tumour/normal pairs were generated as
previously described [4]. Details of per case coverage for each sequencing method are presented in Table
S2. Targeted sequencing interrogating the exons and splice sites of 29 genes in 159 additional breast can-
cers (82 ER+ and 77 ER-ve, tumour and matched normal) was undertaken using exon-specific PCR and
cDNA probe-based capture. The amplified/captured products were sequenced on the lllumina HiSeq 2000
platform.



4 Exome sequence data analysis and mutation validation

Sequence alignment and mutation calling Sequence reads were aligned to the human reference se-
quence (NCBI build 36, hg18) and a compacted reference composed of the targeted exons. Alignments
were performed using Maq v0.7.1 [5] using default parameters. Uniquely aligned reads were kept for down-
stream analysis. Somatic SNVs were called using JointSNVMix (http://compbio.bccrc.ca/software/
jointsnvmix/) [6] combined with mutationSeq [7], from the resulting tumour and normal pair of BAM files
for each case. We used a marginal posterior probability threshold of 0.2 to nominate somatic SNVs, aiming
to err on the side of sensitivity and minimize false negatives. All non-synonymous mutations as profiled
by MutationAssessor [8] (http://mutationassessor.org) were carried forward for validation by deep am-
plicon sequencing. Indels were predicted using samtools v0.1.7 pileup command from BAM files. Indels
present in at least 10% of reads covering the position of interest, predicted to affect a coding sequence,
and for which there were 0 reads containing the same indel in the corresponding normal DNA library were
carried forward for validation as candidate somatic indels.

4.1 Validation of mutations

Revalidation sequencing Somatic mutation predictions were subjected to rigorous validation by targeted
deep amplicon sequencing in the tumour and normal DNA templates. Genomic DNA was prepared as pre-
viously described [9] . Automated primer design was performed using Primer3 (Rozen and Skaletsky, 1998)
and custom scripting. Primer pairs were designed to place the variant position within 75bps of either end of
the amplicon and to be between 50-300bp in length. Primer pairs were independently validated by in silco
PCR followed by BLAT against the human genome to ensure that the correct target was generated and
that the resulting amplicon was unique within the genome. DNA primers were synthesized in 96-well plates
at a 25nmol scale with standard desalting (IDT Coralville, IA USA). Polymerase cycling reactions were
set up in 96-well plates and comprised of 0.5 uM forward primer, 0.5 uM reverse primer, 1-2 ng of gDNA
template, 5X Phusion HF Buffer, 0.2 uM dNTPs, 3% DMSO, and 0.4 units of Phusion DNA polymerase
(NEB, Ipswich, MA, USA). Reaction plates were cycled on a MJR Peltier Thermocycler (model PTC-225)
with cycling conditions of a denaturation step at 98 °C for 30 sec, followed by 35 cycles of [98 °C for 10
sec, 69°C for 15 sec, 72°C for 15 sec] and a final extension step at 72°C for 10 min. PCR reactions were
visualized on 3% agarose (NuSieve) gels for 2hrs at 170V to assess PCR success. Successful reactions
were manually pooled (4ul per well) by template and subjected to Illumina library construction using a mod-
ified paired-end protocol (lllumina, Hayward, USA). This involved A-tailing of the amplicons and ligation to
lllumina PE adapters. Adapter-ligated products were purified on Qiaquick spin columns (Qiagen, Valencia,
CA, USA) and PCR-amplified using Phusion DNA polymerase (NEB, Ipswich, MA, USA) in 10 cycles using
PE primer 1.0 (lllumina) and a custom multiplexing PCR Primer [5-CAAGCAGAAGACGGCATACGAGAT
NNNNNNCGGTCTCGGCATTCCTGC TGAACCGCTCTTCCGATCT-3] where NNNNNN was replaced with
unique fault tolerant hexamer barcodes for each template. PCR products of the desired size range were pu-
rified away from adapter ligation artifacts using 8% PAGE gels, pooled and DNA quality was assessed and
quantified using an Agilent DNA 1000 series Il assay (Agilent, Santa Clara CA, USA) and Nanodrop 7500
spectrophotometer (Nanodrop, Wilmington, DE, USA) and subsequently diluted to 10nM. The final concen-
tration was confirmed using a Quant-iT dsDNA HS assay kit and Qubit fluorometer (Invitrogen, Carlsbad,
CA, USA). For sequencing, clusters were generated on the lllumina cluster station using v4 cluster reagents
and paired-end 75bp reads generated using v4 sequencing reagents on the lllumina GA;; platform following
the manufacturer’s instructions. Between the paired 75bp reads a third 7 base pair read was performed us-
ing the following custom sequencing primer [5- GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCG]
to sequence the hexamer barcode. Image analysis, base-calling and error calibration was performed using
v1.60 of lllumina’s Genome analysis pipeline.

Revalidation data analysis PCR primers were designed to revalidate candidate somatic mutations (SNVs
and indels) on whole genome amplified material for both tumour and normal DNA. Resulting amplicons were
indexed, pooled and sequenced deeply using 75bp paired end libraries as described above. Reads were
separated out by 6bp index using a Hamming distance function with a maximum mismatch tolerance of 1,

{sec:revalidation }



and aligned (Maq v0.7.1) to a reference database containing only the targeted loci for each case. (Note, we
compared results to BWA [10] and there were no observable differences in the validated list of mutations).
For each targeted sequence, we inferred the presence/absence of the targeted variants using a Binomial
exact test as previously described [9]. In addition, we imposed the following criteria in order to classify a
'validated’ somatic mutation:

e both tumour and normal data had a minimum of 50 reads covering the targeted position
¢ the Binomial exact test result (Benjamini Hochberg adjusted p-value) for the tumour < 0.01
¢ the Binomial exact test result (Benjamini Hochberg adjusted p-value) for the normal >= 0.01

e the proportion of reads indicating the variant in the tumour > 5%

For indels, we required:

e a minimum of 10% of all reads aligned to the position containing the indel
e at least 3 reads containing the indel

e a minimum local realignment score of 300

One validation library was single end. For this library, we aligned the reads using GSNAP [11] - a gapped
aligner capable of detecting indels in single end reads.

5 RNASeq data analysis and validation

Sequence alignment and SNV/indel calling for RNASeq SNVs for RNASeq were analysed as pre-
viously described [9] using SNVMix [12]. Paired end libraries were aligned using a modified version of
BWA to a reference consisting of the human genome reference (NCBI build 36, hg18) and a database of
known exon-exon junctions obtained from different annotation databases (Ensembl [13], RefSeq [14], Ace-
View [15]). Sequences representing exon-exon junctions were designed to require at least a 4 base pair
overlap for split-reads. Considering a read length of 50 base pairs, 46 base pairs on either side of the exon-
exon junction were concatenated to represent each exon-exon junction. These alignments were used as
the information source for differential expression analysis as well as measurement of exon abundance and
intron usage. Additionally, de novo splice sites were predicted using HMMSplicer [16]; these predictions
served to determine the effects of splice-site mutations in the transcriptome.

Alignment of RNA-Seq short reads was done using a modified version of BWA (base version 0.5.5 [17],
patch unpublished). In order to apply the Burrows-Wheeler transform [18], upon which BWA is built, the
reference sequence has to be concatenated into one string. When including exon-exon junction sequences
to the alignment reference, these are appended to this string in order for the aligner to consider them
as part of the target space. This procedure can cause mapping problems when working with paired end
tags. In the last stages of alignment, BWA takes advantage of paired information to increase alignment
specificity. When reads map to multiple places, whether with zero or more mismatches, pairing information
can be used to determine the best alignment position for the pair. In order to optimize this process, BWA
measures the distance between the reads of each pair at each mapping position using the concatenated
reference as a base and comparing this distance to the estimated fragment size. Alignment positions in
which the distance between the reads (too short or too long) or their alignment orientation do not match
are discouraged. Given that the exon-exon junction sequences are appended to the genome reference,
any pair where one or both reads map to a junction are broken due to the concatenated distance between
them. Our modifications make BWA aware of the true position of each exon-exon junction in the reference
sequence, thus eliminating some of the mapping issues described above.

Non synonymous SNVs and indels predicted from RNASeq screened against dbSNP and 1000genomes
data that were recurrent by gene in at least 3 cases were submitted for validation using resequencing
methods described as above for exome capture libraries.



Gene expression analysis Gene expression of Ensembl54 gene models was estimated by the num-
ber of fragments that covered them. A fragment was assigned to a gene when at least one read in the
read-pair overlapped an exon in the gene, reads with BWA-assigned mapping quality lower than 10 were
discarded. In order to make expression values comparable across libraries, we applied quantile normal-
ization [19] of fragment counts in log2 space. Akin to microarray analysis, quantile normalization has been
proposed as a viable method for RNA-Seq data that effectively protects against biased estimates due to
over-representation of highly expressed genes [20].

PAMS50 classification Normalized expression values (as described above) were used classify the triple
negative breast cancer samples into two groups (Basal and Other) using the 50-gene classifier described
by Parker et al. [21]. Of the 80 triple negative tumours 48 were classified as basal: and 32 as other; the
latter group included any sample labeled by PAM50 as LuminalA, LuminalB, Her2 or Normal-like. Unsuper-
vised hierarchical clustering (method: Ward, distance: spearman correlation) was performed to assess the
reproducibility of PAM50 groupings. At k = 3 clusters there is a strong group of 16 samples labeled Other,
a group formed by 6 libraries obtained from normal tissue and a group of 64 samples with mixed labels; at
k = 4 this last group is split into a strong Basal cluster (n = 28) and a mixed one (n = 36). Unsupervised
hierarchical clustering thus independently supported the primary classification by PAM50 into a relatively
homogenous "basal” expression group and a more heterogenous "other” TNBC group.

Gene fusion analysis and PCR validation Gene fusions from paired end RNASeq data were predicted
using defFuse v0.3.6 [22]. The deFuse predictions were filtered by thresholding on the deFuse probability at
a value of 0.5, corresponding to a false positive rate of 0.93 and a false negative rate of 0.15. We identified,
from the filtered deFuse predictions, those fusions that were corroborated by a genomic breakpoint in the
Affymetrix SNP 6.0 copy number analysis. A fusion was considered corroborated by a genomic breakpoint
if that breakpoint was predicted to occur within the boundaries of one of the genes involved in the gene
fusion. From the list of genomic breakpoint corroborated fusions, we selected 64 events for validation.

Where available, we sought to identify evidence of genomic rearrangement to corroborate fusion pre-
dictions. We performed a targeted search for supporting Whole Genome Shotgun Sequencing (WGSS)
read pairs in SOLID data for 15 tumour genomes. For each fusion, a paired end alignment was consid-
ered supporting if it aligned less than 200,000 nucleotides downstream of the predicted fusion boundary in
each gene. Supporting paired end alignments for each fusion were clustered, and the largest cluster for
each was identified. Sequences for each breakpoint were assembled from paired end alignments as de-
scribed previously [23]. In total, we identified 29 genomic breakpoints supporting gene fusions. In addition,
5 tumour genomes were sequenced using paired end whole genome shotgun sequencing at low coverage
(~8x) using lllumina GA;;. For these genomes, we used comrad v0.0.1 [23] (http://compbio.cs.sfu.ca)
to identify fusions with supporting genomic breakpoints.

The expression of the fusion transcripts were validated by RT-PCR followed by Sanger sequencing. In
brief, reverse transcription was performed using SuperScript Il (Invitrogen Canada Inc., Burlington, ON)
and 200 ng of RNA from the source tumour. PCR was carried out using Finnzymes PhusionTM High
Fidelity DNA polymerase (New England BioLabs Inc., Pickering, Ontario) as well as forward T7 tagged and
M13 reverse tagged PCR primers specifically designed to each predicted rearrangement. Products were
visualized on 1.5% agarose gel prior to submission for Sanger sequencing at Macrogen (Rockville, MD,
USA).

6 Network and pathway analysis using Reactome and EnrichmentMap

For network and pathway enrichment analysis for mutations, differential expression and copy number anal-
ysis, we used the Reactome FI [24] Cytoscape [25] plugin in Cytoscape v2.8.1. Significantly enriched
pathway gene sets were exported and analysed using EnrichmentMap [26] to determine relationships be-
tween pathways. For this analysis, gene sets in GMT format were provided by the Reactome FI authors
(Wu, personal communication). Patient-pathway clustering was performed by projecting a patient-gene
matrix containing occurrences of mutations in a given gene in a given patient to a patient-pathway matrix
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containing occurrences of mutations in a given gene belonging to a pathway (or geneset) in a given patient.
This patient-pathway matrix was then clustered using hierarchical agglomerative clustering with Euclidean
distance and Ward linkage. We acknowledge the redundancy induced by the many-to-many relationship
structure of genes in pathway gene sets, however to preserve biological interpretability and to maintain
identifiable gene sets in Reactome, genesets were kept unaltered.

7 Affymetrix SNP6 analyses

7.1 Normalization of intensities

The Affymetrix SNP6.0 arrays for both tumour and normal samples were all independently normalized using
the single array method CRMAv2 [27]. We applied the default settings using the following tags: ACC,ra,-
XY,BPN,-XY,AVG,A+B,FLN,-XY. For each sample, allelic-crosstalk calibration, probe sequence effects nor-
malization, probe-level summarization, and PCR fragment length normalization was performed. The fol-
lowing annotation files were used (Feb 14, 2008): Chip definition file (GenomeWideSNP_6.Full.cdf), Unit
fragment-length (GenomeWideSNP_6,Full,na24,HB20080214.ufl), Unit genome position (GenomeWideSNP_6,Full,na24,HB

7.2 Normalization using a reference

Log ratios were computed for both tumours and normals by normalizing each array independently against
a reference. Due to the incomplete pairings of tumours and matched normals, we needed to generate
a pooled reference from all the available normals.. However, because we are also attempting to identify
CNVs in addition to CNAs in the tumours, using a simple pooled reference (median intensity across all
normals for each probe) can “subtract” inherently frequent (> 50%) copy number events in the normals from
the tumours. For example, using a reference which contains a region that is deleted in more than half the
normal samples will result in an artificially amplified signal when computing the ratio for a true neutral signal
in the tumour sample. Therefore, we generated a “masked” reference from the normal dataset that was free
of inherent copy number polymorphisms, while accounting for systematic biases.

We started with CRMAv2 normalized intensities of the matched normal samples and computed log ratios
using a randomly permuted reference. Next, probe-level discrete copy humber calls were made using a 6-
state hidden Markov model (described below). For each sample, we identify probes that are predicted as
gains or losses. Next, we retrieved the original normalized intensities that we started with and masked out
the probes we identified in the previous step. Finally, we computed the median (pooling) intensity value for
each probe across all samples using only the remaining values after masking. The result is a single vector
of median values, which makes up the masked reference. In this approach, the masked reference improves
analysis of germline CNVs in the tumours by serving as a true base-line vector of intensities for log ratio
calculations and allowing all true alteration signals in the data to be detected.

7.3 Segmentation and copy number analysis of 28 Affymetrix SNP6 normal sam-
ples using a 6-state HMM

We applied the 6-state HMM to 28 normal samples to detect germline CNVs by returning segment and
probe-level copy number. The 6-state HMM is a modified version of CNA-HMMer [28] that that has been
adapted to analyzing high-density genotyping arrays such as the Affymetrix SNP6.0 platform and whole
genome shotgun data. Another significant extension is the inclusion of additional copy number states,
which offers a more intuitive interpretation of DNA dosage in cancer. The new discrete copy number state
space included neutral (NEUT), homozygous (HOMD) and hemizygous (HETD) deletions, gain (GAIN),
amplification, (AMP) and high-level amplification (HLAMP).

Kena ={HOMD,HETD,NEUT,GAIN,AMP, HLAM P} (1) feakcnay



7.4 Segmentation and copy number analysis of 104 Affymetrix SNP6 tumour sam-
ples using HMM-Dosage

We performed copy number analysis on the 104 tumour samples using HMM-Dosage (Ha et al, manuscript
in preparation). The alrogithm is designed to detect and distinguish the complete set of somatic and
germline copy number events in cancer genomes interrogated by SNP array data. This model extends
the 6-state HMM (above) by using 5 additional CNV states to represent the analogous copy number status

Keny ={CNVHOMD,CNVHETD,CNVGAIN,CNVAMP,CNVHLAMP}. (2)

The model performs segmentation on log ratios of intensity data and assigns a discrete copy number sta-
tus k, € {Kcna, Keny} 10 the each latent variable, Z,, for all probes 7 € {1...T}. Log ratios, Y = {y,...,yr},
are observed values modeled using Student’s-t densities in the emission component of the HMM, condi-
tional on Z, = k, . Spatial information is captured using a non-stationary transition matrix, A,, that encodes
position-specific probabilities of CNVs and CNAs at each probe r. In order to distinguish between somatic
copy number alterations (CNAs) and germline copy number variants (CNVs), HMM-Dosage probabilistically
incorporates CNV information as a prior to the transition matrix.

The CNV prior was computed as probe-level CNV frequencies by combining (weighted averaging) 2
datasets: 482 normal samples from METABRIC [29] and an external dataset of 450 HapMap normal sam-
ples whose CNVs were predicted by [30]. Because the HapMap dataset contains males, we excluded chrX
frequencies and simply used the chrX frequencies from the 482 normals.

The parameters of the Student’s-t distributions are unobserved and estimated using the expectation
maximization (EM) algorithm for each sample, independently. Initial parameters for the Kcy4 states of
the Student’s-t mixture were empirically determined using 45 SNP6 breast cancer cell line samples in the
COSMIC [31] dataset. First, independently for each cell-line sample, we fit the log ratios to a 6-state
Gaussian mixture model using EM. Subsequently, the converged Gaussian mixture parameters are used
as initial parameters for fitting a 6-state Student’s-t mixtures in the 6-state HMM (again, using EM). Finally,
we averaged the converged Student’s-t parameters for each state across the 45 cell lines. These averaged
parameters became the initial Kcy4 parameters to Student’s-t emission of HMM-Dosage. Initial parameters
for Kcyyv were set by hand to theoretical values log2([0.5,1,3,5,71/2).

The optimal state sequence, Z,.;, which represents the copy number prediction for each probe, is com-
puted using the Viterbi algorithm.

In general, HMM-Dosage was tuned to be conservative in calling CNVs as to avoid misclassifying the
more important CNA calls. Therefore, the results were post-processed by comparing against the CNV map
(derived from 482 normals and HapMap270) such that CNA segments that had at least 25% reciprocal
genomic overlap with a segment of the same copy number state in the CNV map were converted to germline
state.

7.5 Genomic instability

For each of the 80 genomes analyzed by Affymetrix SNP6 arrays that have RNA-seq data, genomic insta-
bility (Gl) was computed as the proportion of genome altered by basepair. For this analysis, we calculated
the total length of all CNA events (HOMD, HETD, GAIN, AMP, HLAMP) by using the segmentation bound-
aries predicted by HMM-Dosage. This value is then divided by the total length of all predicted segments,
including NEUT. This calculation is also done for each CNA type to reveal the relative contribution of each
alteration event type to Gl.

We also compared Gl between basal and non-basal PAM50 subtypes. The basal subtype shows higher
Gl for all CNA types.

7.6 Gene alterations

In order to identify the genes that are altered by copy number changes, we searched for overlap of segments
with gene regions. The gene annotations and coordinates are given by Ensembl 54 (hg18). The genes
selected for analysis are those annotated as protein-coding, totaling to 20878 genes.
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We generate two types of patient-by-gene copy number matrices to capture two perspectives of gene
alterations. The first type is the 'call’ matrix, C € Z™¢, which is populated with values representing discrete
copy number state calls. The second is the log ratio matrix, which contains segment median log ratios. For
this latter matrix, genes overlapping multiple segments are summarized using two different approaches to
produce L, € R”™¢ and L, € RP™C. For each patient p € P and each gene g € G, we identify segment s that
overlaps g and assign C(p, g) with the copy number state of s and L,(p,g) and L,(p, g) with the median log
ratio of the probes in s.

If gene g overlaps or is broken by a set of segments, S = sy,..., s;, where k >2, we assign C(p, g) with
the copy number state of the segment having max severity based on the binary relation (Equation 5 and
6). For L.(p,g), the weighted sum of the median logRs (Equation 3) is used while for Li(p, g), the logR
corresponding to the most severe segment is used (Equation 4).

L,p,g) = ( Z length(s) medianLogR(s))/ Z length(s) (3)
seS seS
Lyp,g) = logRvalueOf (argmax{severity(CNstateOf(s))}) (4)
seS
Clp,g) = CNstateOf(argmax{severity(CNstateOf(s))}) (5)
seS
severity = {(NEUT’,0),

(HOMD',8),(‘'HETD', 6),

(‘GAIN',5),CAMP’,6), CHLAMP', 8),

(‘CNVHOMD',4),(CNVHETD,3),
(CNVGAIN',2),((CNVAMP,3),(CNVHLAMP',4)} (6)

7.7 Subtype-specific analysis of copy nhumber

A X? (Chi-Square) test of independence was used to determine subtype association with copy number. For
each gene g, copy number of the patients were divided into 3 levels: deletion (HOMD & HETD), gain (GAIN,
AMP, HLAMP) and neutral. For the omnibus test, patients were divided into 2 levels (subtypes), Basal and
non-Basal. No significant genes were found after using Bonferroni adjusted p-value cutoff of 0.1.

7.8 Outlier analysis

To identify genes whose expression was driven in cis by extreme copy number events, we fit Gaussian
distributions to the 80 expression values of a gene across the patients in the cohort (for which RNASeq
data was available), using the maximum likelihood estimates of the mean and variance. For genes with
multiple probes, we summarized the expression level using the median. This resulted in 20878 Gaussian
distributions, each corresponding to the expression profile of a gene.

We then sought to capture gene-patient (g, p) events where large amplitude copy number events (such
as putative homozygous deletions and high level amplifications) drives expression into the extreme tails
of the expression profile. We selected events in 5% left-tail or 5% right-tail of the expression distributions.
Events in the right tail whose copy number state was either amplification or high-level amplification (HLAMP)
by HMM-Dosage and those events in the left tail whose copy number state was homozygous deletion
(HOMD) were reported.

8 WGSS analysis for copy humber

The following analysis is implemented into an R package called HMMcopy available from http://compbio.
bccrc.ca/software/hmmcopy/.



8.1 Segmentation and copy number analysis of 15 WGSS tumour samples using
6-state HMM

The WGSS-derived copy number results used as input in APOLLOH (see below) were generated using a
modified version of a paired tumour-normal strategy described previously in [32] and [9]. The genome was
divided into fixed windows of 1kb, and read depth is extract for each window in the tumour and normal. In
this study, we applied two additional preprocessing steps prior to segmentation in order to achieve more
accurate copy number estimates. First, we applied a filter to remove repetitive regions that are highly
mappable. Second, we corrected GC content bias to remove wave-like patterns in the tumour and normal,
separately, using a loess curve fit between GC content and read depth. A log ratio is computed for each
window by computing proportion between the GC corrected tumour value and GC corrected normal value.

Divide the genome into fixed genomic windows

First, the genome was divided into fixed genomic windows of 1kb, reducing the analysis to a set of approxi-
mately 2.5 to 3 million loci, R.

Extract read depth for normal and tumour

Next, separately for the normal and tumour genomes of each patient, we extracted the total read depth
for each window in R using BAMtools [33], resulting in a vector of read count data from the normal, Ng =
(ny,...,mg) and tumour, Tg = (¢, ..., 1ir), respectively.

Removing windows that are highly mappable

Using "JENCODE Duke Uniqueness of 35bp sequences” track from UCSC (http://genome.ucsc.edu/
cgi-bin/hgTrackUi?db=hg18&g=wgEncodeMapability), we filtered windows that were within repetitive re-
gions, resulting in being highly mappable by aligners. Windows that had mappability score of > 0.9 were
excluded. This removed extreme amplified positions which would have otherwise posed as confounding
outliers in downstream segmentation analysis.

GC content correction of normal and tumour read counts

We performed GC content bias correction to the tumour and normal of each patient separately. We applied
a global loess fit between GC content and read depth for windows in R. Due to computational restrictions
of fitting 3 million data points, we further excluded outlier windows based on read depths being in the upper
and lower 1% quantile, and randomly sampled 20,000 of the remaining windows for generating the loess
curve. Finally, the read depth of all windows, Ng and Tk, are corrected by scaling the observed value by
the loess fitted value (Equation 7).

b d read depth
corrected read depth = goserve 'rea P (7)
loess fitted value

Normalizing copy nhumber in tumours

The GC corrected normal Ng and tumour Tg counts are normalized independently to generate Ng =
(ii,...,ag) and Tr = (f1,...,4r), respectively, where 7, = ﬁ and 7; = ﬁ i €{l,...,|R]}). To obtain
the final tumour copy number observed at each loci r € R, we applied another normalization step by taking
the log2 ratio between tumour and normal copy number, Tx(i) =log, (,’T) ie{l,...,|R]}.

{eq:loess correct }



Segmentation and copy nhumber prediction via HMM

The 6-state version of HMM-Dosage was used to segment the input data T. Initialization and hyperparam-
eters for the prior means of the Student’s-t distribution used for this analysis were log2(([1, 1.4,2,2.7,3,4.5])/2).
Because the normalized the tumour counts with the match normal read count naturally excludes germline
CNVs, using the 11-state HMM-Dosage to distinguish CNA from CNV was not required.

8.2 Segment-based correlation of WGSS and SNP6 predicted copy humber

Copy number results from WGSS data was used to help validate HOMD and HLAMP predictions in the
Affymetrix SNP6 data. In the 15 cases, for each HOMD and HLAMP predicted segment, s, boundaries sy,
and s.,; and segment median a, are extracted from the SNP6 results. We compute the median log ratio
copy number w, across the set of regions i € R that overlap these boundaries sy, and s.q-

Ws = median(TN(r)), {r|r € R, Tsiart = Sstarts Tend < Send}

Spearman correlation is computed on wy.s and a;.s where S is the total number HOMD/HLAMP seg-
ments in the SNP6 results.

9 Analysis of LOH

We determined loss of heterozygosity (LOH) in the 15 WGSS and 50 exome samples using a probabilistic
model packaged in the software called APOLLOH (Ha, et al manuscript in preparation). Preprocessing
of the data is performed in a paired tumour-normal approach by interrogating informative heterozygous
loci identified in the normal genomes using UnifiedGenotyper from GATK [34]. Next, the tumour genome
allelic counts in the same loci are input into APOLLOH which performs segmentation of the allelic ratios
into regions of LOH, allele-specific copy number amplification (ASCNA) and heterozygosity (HET). Copy
number was also input into APOLLOH to enhance predictions within regions that deviate from copy neutral.
For the WGSS samples, we used copy number results predicted by the previously described depth-based
WGSS approach. For the exome samples, we used copy number results from the SNP6 genotyping arrays.
Software for APOLLOH is available from the authors’ website at : http://compbio.bccrc.ca/software/
apolloh/ .

10 Human regulatory region analysis

Analysis of 323 high-confidence somatic mutations in non-coding space showed that 72 were found to
fall within experimentally determined human regulatory regions as described in [35]. For each variation
contained within a ChIP-seq-defined region, the matrix for the corresponding TF was used to predict putative
TFBSs overlapping the variation (reviewed in [36]). Two TFBS scores were generated, one corresponding
to the reference genome sequence and the other corresponding to the observed cancer variation. A relative
matrix score threshold of 80% was applied to define putative TFBSs. As the variations were selected to
overlap regions of known transcription factor binding, we generally expect the reference allele to score
higher for functionally significant changes (i.e. to go from a functional TFBS to a non-functional one).
We called regulatory variations exceeding the 80% threshold as putatively impactful to transcription factor
binding. In the TN breast cancer set, 2 such somatic mutations were predicted to affect MITF binding and
6 somatic mutations were predicted to affect RB binding.

11 DriverNet: Integrated analysis of copy number, mutations and
gene expression data

To nominate mutations predicted to have significant impact on expression networks, we used the 681 Re-
actome Fl gene sets containing 7521 genes to construct an ’influence graph’ where genesets were used



to form ’cliques’ in the graph. We then constructed a bipartite graph such that each gene that was in the
mutation list from sequencing or HOMD, HLAMP list from CNA analysis was placed in one partition of the
graph and the outlying expression genes (as described above) was placed in the other partition. Edges
between nodes in the two partitions were drawn according to the following criteria:

e a mutation and an outlying expression event co-occurred in the same tumour
e an edge between the two genes was present in the influence graph

With the influence graph constructed, we then sought to rank the genes in the 'mutation’ partition such
that nodes explaining the highest number of outlying expression expression events (by greedy algorithm)
were nominated as putative driver mutations. The greedy algorithm is an efficient approximation to the
combinatorial optimization problem induced by the bipartite graph construction that we wish to solve in
order to predict the fewest number of mutations that disrupt the maximum number of expression signatures.

The statistical significance of the candidate genes are assessed using a randomization framework.
Given the original dataset S, the algorithm is run on randomly generated datasets N times (S1,...,Swy)
and then the results on real data are assessed to see if they are significantly different from the randomized
datasets. This in an indirect way of perturbing the bipartite graph corresponding to the original problem.
To generate the random datasets, we keep the contents of patient-mutation, M, and patient-outlier, G’,
matrices the same but replace the gene symbols with a randomly selected set of genes from the Ensmbl 54
protein-coding gene list. Using the same influence graph, the algorithm is run on the new patient-mutation,
M,...My;, and patient-outlier, G}...G,, matrices.

Suppose D is the result of driver mutation discovery algorithm on the input U. D contains a ranked list
of driver genes with their corresponding node coverage in the bipartite graph, 8. The statistical significance
of a gene g € D with a corresponding node coverage, COV,, is the fraction of times that we observe driver
genes in our random data runs D;, with node coverage more than COV,:

ZZ] Z?& 6[COV,; > COV,]
N Zf\;l M;

where M; is the number of drivers identified in run n of the algorithm, N is the total number of times that
the algorithm on random datasets were run.

Software for this analysis called DriverNet (Haffari et al., manuscript in preparation) is available from the
authors’ website: http://compbio.bccrc.ca/software/drivernet . Pathway analysis of the top 50 genes
output by the greedy algorithm was performed using Reactome as described above.

pvalue(g) = 8)

12 Clonal frequency analysis

We used a hierachical Bayesian model which accounts for uncertainty about genotype to estimate the fre-
quency of cells with a given mutation. We imagine each mutation divides the population of cells into two
classes; those without the mutation we call the reference population and those with we refer to as the vari-
ant population. We treat the reference population as though it has fixed genotype of AA. We model the
genotype of the variant population at a given locus using one of 27 states allowing for copy numbers from
1-6 and differing zygosity status. We use information about copy number and LOH status derived from
APOLLOH exome analysis to inform or prior beliefs on the genotype of the variant population. To allow mul-
tiple mutations to have the same frequency, we use a Dirichlet process prior on the class frequencies. Sites
which are clustered by this model have cellular frequencies which are sufficiently similar that they are better
explained as originating from a single class of cells. Inference for this model is performed using Markov
chain Monte Carlo sampler. A full description of the hierarchical Bayesian model shown as a probabilistic
graphical model is shown in Figure S10. Input to the model is a set of mutations and their allele abundance
(reference, variant). In addition, the copy number and LOH status at the position of each mutation is given.
The output of the model is a mutation co-occurrence matrix containing the proportion of MCMC samples in
which each pair of mutations were grouped together, and the clonal frequency estimation for each of the
MCMC samples, thus allowing inference of a posterior distribution of clonal frequency estimates.

{sec:clonal}



Software implementing this approach called PyClone (Roth et al., manuscript in preparation) is available
upon request from the authors. Cases with 10 more more mutations were included in the clonal frequency
analysis. This led to estimates for 2109 mutations distributed across 54 cases. We clustered the muta-
tion co-occurrence matrix for each case using hierarchical clustering and deterministically assessed the
groupings of mutations into 'clonal clusters’ using the R library dynamicTreeCut [37]. Clonal frequency
distributions for each mutation were then plotted as in Figure 4 according to these groupings.

Each pathway in Reactome was also assessed for skewing of clonal frequency by Wilcoxon test. Clonal
frequency estimates for each case were first adjusted by normalizing by the maximum clonal frequency
value to remove the effect of normal cell contamination. The adjusted clonal frequencies were then used
to assess whether the distributions of the mutations falling into a given pathway were different than the
background distribution of all clonal frequency estimates using the R implementation of the Wilcoxon test
wilcox.test. Resultant p-values were then adjusted using p.adjust with method="BH".
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Supplemental Tables for Shah et al: The clonal and
mutational evolution spectrum of primary triple negative
breast cancers

This file contains the legends describing Tables S1-17. All tables are available as an archived zip file in
the Supplemental Data from the Nature website.



Table 1: Summary of data generation for 54 tumour and normal DNA exome libraries and 80 RNASeq
transcriptome libraries. RNAseq and exome libraries were 50bp paired end lllumina sequence data. For
RNASeq data, the number of aligned reads in exons, introns and intergenic regions of the genome are listed
with three mapping quality categories. Mean, median and standard deviation of targeted exon coverage is
listed for each exome library. Total acquired data for 15 SOLiD whole genome shotgun tumour/normal pairs
are also listed.

Table 2: Summary of clinical characteristics of the patients. A full data dictionary describing all clinical
variables is presented (Sheet 2)

Table 3: Omnibus table of validated somatic SNVs. All mutations were revalidated with deep amplicon resequencing. There
were 2414 somatic point mutations that revalidated. Mutations were annotated with MutationAssessor (http://mutationassessor.org/,
[1]). Column descriptions are as follows: id: unique patient/genome coordinate (NCBI build36, hg18); Patient.ID: case id;
Chr: chromosome; Coord: chromosomal position; Mutation: nucleotide substitution; RG.var.type: missense, nonsense or
silent mutation; Func..Impact: mutationassessor Functional impact class; Fl.score: mutationassessor Functional impact score;
AA.variant: amino acid substitution; Gene: gene name (HGNC); Location: chromosomal band; Uniprot: uniprot id; Refseq: ref-
seq id; mutations.in.COSMIC.position: previously reported mutations at the same genomic coordinate in the COSMIC database;
types.of.cancer.in.COSMIC.position: description of previously reported COSMIC mutations; gene.s.known.role.in.cancer: cancer
gene census; regions.position: affected protein/domain localisation; Ref.count.Tumour.: resquencing reads from the tumour DNA
matching the reference; Alt.count.Tumour.: resquencing reads from the tumour DNA matching the variant; Total.count..Tumour.:
total resequencing reads from the tumour DNA; Alt.frequency..Tumour.: proportion of resequencing reads that are variant; Bi-
nomial.test.p.value..Tumour.: Binomial exact test p-value; Binomial.test.corrected.p.value..Tumour.: Binomial exact test cor-
rected p-value; Binomial.test.status..Tumour.: Binomial exact test corrected p-value < 0.01?7; Ref.count..Normal.: resquencing
reads from the matched normal DNA matching the reference; Alt.count..Normal.Total.count..Normal.: resquencing reads from
the normal DNA matching the variant; Alt.frequency..Normal.: proportion of resequencing reads matching the variant; Bino-
mial.test.p.value..Normal.: Binomial exact test p-value; Binomial.test.corrected.p.value.Normal.: Binomial exact test corrected
p-value; Binomial.test.status.Normal.: Binomial exact test corrected p-value < 0.017?; SVNMix2.Call. RNASeq: most probable geno-
type from SNVMix2 [2] (0 - not expressed, 1 - wildtype expressed, 2 - heterozygously expressed, 3 - homozygously expressed) ;
Ref.RNASeq.: number of reference reads at position from the matching RNASeq data ; Nonref.RNASeq.: number of variant reads
at position from the matching RNASeq data; Ens54Gene: Ensembl v54 gene name ; Strand: gene strand ; CNCall: copy num-
ber state ; CNLogR: SNP6.0 median log ratio for the overlapping segment at this position ; PAM50: PAM50 class (Basal/Other) for
this case ; Splice.site: position is a dinucleotide donor/acceptor splice site (TRUE/FALSE); HMMDosage_Call: copy number state;
HMMDosage_LogR: raw continuous copy number value; OncoSNP_Call: predicted OncoSNP [3] state ; OncoSNP_CN: predicted
OncoSNP copy number; apolloh.loh.ratio: raw LOH value from APOLLOH analysis (see supplemental methods); apolloh.call: LOH
call from APOLLOH from exomes; APOLLOH_-WGSS_Call: LOH call from APOLLOH from genomes;APOLLOH_WGSS_CN: copy
number used for APOLLOH analysis; HMMcopy_-WGSS _Call: copy number inferred from genome data; HMMcopy WGSS_CN: nor-
malized logR input for genome-based copy number analysis; mut_freq-.GBM: frequency of mutation in gene in TCGA GBM data;
mut_freq_HGS: frequency of mutation in gene in TCGA HGS data; clonality: estimation of clonal frequency.

Table 4: Validated SNVs at dinucleotide donor/accptor splice sites (based on Ensembl v54 annotations)
inducing alternative splicing or intron retention in the RNASeq data: legends as per Table S3.

Table 5: Validated somatic insertions and deletions. Scores are as predicted by samtools pileup [4].

Table 6: Table of CNA segments for 104 Affymetrix SNP6.0 arrays, predicted as described in Supplemental
methods. Columns are CaselD; Chromosome; segment start coordinate (NCBI build 36); segment end
coordinate; number of probes in segment; median logratio of segment; HMMDosage state (somatic states
are HOMD: homozygous deletion, HETD: hemizygous deletion: GAIN: single copy gain, AMP: amplification,
HLAMP: high-level amplification (see Supplemental methods); HGNC gene names of genes contained in
the segment. The first six columns can be extracted and viewed in the Integrated Genomics Viewer Software
(http://www.broadinstitute.org/igv/).

Table 7: Summary of 517 CNA breakpoint-corroborated gene fusions predicted by deFuse [5]. In addition
to the columns described at http://compbio.bccre.ca, 2 columns (gene_1_broken, gene_2_broken) identify
which genes are interrupted by a CNV breakpoint, and 2 columns (transition_type_1, transition_type_2) iden-
tify the type of the transition.

{ stab:data’summary-all}

{ stab:clin’data’table }

{ stab:validated’somatic’SN

{ stab:validated somaticspli

{ stab:validated somatic’ind

{stab:CNA'frequency table

{ stab:defuse predictions }



Table 8: Summary of genomic breakpoints from a targeted search for supporting paired end reads in 15
SOLID paired end tumour genomes. Shown are the case identifier, genes involved in the fusion, breakpoint
sequence, and number of supporting paired end reads.

{ stab:solid'genome 'breaks

Table 9: Integrated genome/transcriptome analysis for expressed gene fusions with corroborated genome
rearrangements from 5 tumours (SA029, SA030, SA031, SA051, SA054) for which both RNASeq and low-
pass whole genome shotgun data generated with lllumina paired end sequencing was obtained. Analysis
was performed using Comrad (http://fusioncomrad.sf.net). A description of the table format can be found at
http://fusioncomrad.sf.net

{ stab:comrad results }

Table 10: A subset of 35/63 selected gene fusion candidates from Table S7 that were validated with PCR.

{ stab:validated fusions }

Table 11: 72 non-coding mutations falling in regulatory regions showing 23 mutations in Rb transcription
factor binding sites and relative scores of predicted Rb binding in wildtype vs mutant tfbs sequences

{ stab:regregions }

Table 12: Mutation frequency by gene for somatic SNV, indel and splice site mutations

{stab:snv’indel’'gene freque

Table 13: Mutation significance analysis showing genes predicted to be under selection through analysis
of background synonymous mutations and non-synonymous mutations. All genes were analysed using
methodology outlined in Youn and Simon [6].

{ stab:mutsig }



Table 14: Enriched pathways from the network computed from recurrent somatically mutated genes in the
Reactome functional interaction map. Enriched pathways with FDR <= 0.001 are included.

Table 15: Analysis of the top somatically aberrated genes (by node degree) connected (by Reactome gene
sets) to genes that exhibited outlying expression from their population level distributions as computed by
driverNet. Columns: Rank: by driverNet algorithm (Supplemental methods); Gene: somatically aberrated
gene; gband: chromosomal band containing gene; SNV/Indel: number of cases harbouring an SNV or
indel in the gene; HLAMP: number of cases harbouring a predicted high level amplification; HOMD: number
of cases harbouring a predicted homozygous deletion; events: number of gene expression outliers (see
Supplemental methods) coincident with a genomic aberration and where the outlying gene is connected to
the aberrated gene; p-value: statistical significance based on a randomly generated background distribution
(Supplemental methods).

Table 16: Comparison of significantly enriched pathways (FDR < 0.005) by Reactome analysis from the top
50 genes predicted by driverNet (Supplemental methods) for TNBC and ovarian high grade serous (HGS)
data from the TCGA [7]. The pathway, the initial p-value, the adjusted p-value the driverNet genes and the
overlap status are shown, where status=1 indicates TNBC specific pathway, status=2 indicates HGS and
TNBC enriched pathways and status=3 indicates HGS specific pathways.

Table 17: Analysis of the distributions of clonal frequency estimates of genes in Reactome pathways. For
each set of genes belonging to a pathway, a Wilcoxon test was performed to assess whether the distribution
of the clonal frequencies of genes in a pathway was different than the overall background distribution. For
each pathway, the name of the Reactome pathway, the geneset of the pathway, the mutated genes that fall
into the pathway, the number of such mutation events, the median clonal frequency estimate, the Wilcoxon
p-value, and adjusted p-value (Benjamini-Hochberg) are shown.

{ stab:mutations'pathways }

{ stab:drivernetall }

{stab:tnbc’ohgs }

{ stab:pathway clonal freque
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