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Supplementary Information 

 

 

Supplementary Figure S1 | The experimental characterization and simulation of the SPP virtual 

probe. (a) The image on the back focal plane of the objective lens was obtained using a CCD 

camera at the wavelength of 1064 nm; the dark ring (indicated by a black arrow) corresponds to 

low reflectance resulting from SPP excitation. All parameters are as in Fig. 1 of main text. (b) 

Experimentally measured near-field intensity distribution of the SPP virtual probe on metal film 

(x-y plane) obtained using a new method referred to as surface-enhanced Raman scattering 

(SERS) mapping technique38. Here, without loss of generality, we chose the incident wavelength 

of 532 nm in the experiment, because our SERS mapping setup is dedicated to the 532 nm light 

source. Nevertheless, except for pattern size, the actual pattern of the virtual probe at 1064 nm 

should be very similar to that at 532 nm. We employ a 3D FDTD method (Rsoft Fullwave v8.1) to 

show both simulated results of the virtual probe field at 1064 nm and 532 nm in (c) and (d), 

respectively, to confirm that they have very similar patterns. 

app:ds:characterization
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Supplementary Figure S2 | Successive images of experimental trapping of dielectric and 

metallic particles in plasmonic tweezers. The sample particles include (a) dielectric particle 

(silica) with a diameter of 2.47 μm, and gold particles with a diameter of about (b) 0.5 μm and (c) 

1.5 μm. Black arrows indicate the trapped particle, and the black crosses indicate the position of 

the plasmonic virtual probe. These experimental results verify that our plasmonic tweezers can 

trap both dielectric and metallic particles over an effective large size range from nanometer to 

micrometer. 
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Supplementary Figure S3 | Temperature distribution and thermal convection in the focused 

plasmonic tweezers system. (a) 3D Temperature distribution around the central plasmonic 

virtual probe (x=0, y=0) during illumination calculated using the FEM method (COMSOL 

Multiphysics v4.3). Gold film with a thickness of 45 nm is located at z=0. Although the power of 

the laser is about 100 mW, the metal film is usually located 2~3 μm below the focal plane of the 

high NA objective lens, hence the light spot on the metal film is large and the average intensity is 

about 0.2 mW/μm2. Thus, in the FEM simulation, we chose an illumination intensity of 0.2 

mW/μm2. The calculated result shows that maximum temperature increase is only about 2.1°K, 

because most of the power is reflected and only a small amount of light is coupled to the SPP 

(shown as the dark ring in Supplementary Figure S1(a)) and contributed to heating, and the heat 

is rapidly conducted to the whole gold film due to the high thermal conductivity. (b) 2D 

distribution of thermal convection velocity near the plasmonic virtual probe (x=0). The 

background shows the temperature distribution, and the black arrows indicate the direction of 

convection in water. The result of thermal convection currents demonstrates that the circulating 

fluid could produce a convection force to the central plasmonic virtual probe near the gold film. 

This convection force could further strengthen the trapping force along the horizontal 

dimension. 
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Supplementary Note 1 | Derivation of the total electromagnetic force on the particle 

Lorentz force: f E J B   .                                                  (S1) 

Dynamical Coulomb force (gradient or polarization force): 

grad ( ) ( , ) ( , )dF ρ r E r
v

t t t v  .                                                    (S2) 

Dynamical Laplace force (scattering force): 

scat

1
( ) ( , ) ( , )dF j r H r

v

t t t v
c

  .                                                 (S3) 

According to the inhomogeneous Maxwell equations: 
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then equation (S1) becomes  
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Because EE  and BB  are tensors and I  an unit tensor, we obtain 
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Using the Poynting vector 
1

S E H E B


    , we have 
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where 
2 2

0 0 0 0( )
2

I
T EE HH E H        

represents the Maxwell stress tensor matrix.
 

Thus, the total electromagnetic force (Lorentz force) on the particle can be described as 

d d d
S

F f T
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According to the divergence theorem d dAA n
sv

v s   ∮ , equation (S8) becomes 
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In a static electromagnetic field, 0
S

t





 after time-averaging, the total averaged force is 

dF T n
s

s ∮ ,                                                          (S10) 

where n  is the unit normal perpendicular to the small area d s  on the particle surface. 

app:ds:divergence
app:ds:theorem
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Supplementary Note 2 | Derivation of the gradient and scattering forces 

The gradient force is essentially a Coulomb force that depends on the local electric field and the 

charge density induced in particle. The scattering force is a Laplace force related to local 

magnetic field39. Thus, the electrical field force (gradient force) component of the Lorentz force 

can be expressed as in equation (S2). According to equation (S5), we obtain: 
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where ex , e y
 and ez  are the unit vectors in x, y, and z directions. Thus

gradf  is from the first 

term of ( ) [( ) ( ) ]EE E E E E      , shown in equation (S6), and the second term 

( )E E   is a part of the magnetic force. To obtain 
gradf , we also need to calculate the second 

term ( )E E  , which can be derived as follows: 
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When a mesoscopic or Mie metallic particle is in an external electrical field, the electrical field 

vanishes inside the metal particle, and the charge only distributes on the surface of the particle. 

This is observed from the electric field distributions in Fig. 3(c). Thus, for the slope (or 

differential) of electric field component from the surface to an arbitrary point on the surface of 
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metal sphere, we obtain 
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where , ,a x y z , , ,b x y z ; note that these differential results are approximate and only valid 

for large metallic particles (mesoscopic or Mie metallic particles). For Rayleigh metallic 

nanoparticles smaller than the skin depth of the metal, equation (S15) is invalid because the 

electrical field does not vanish inside the particle. 

Substituting equation (S15) into the expressions for ( )E E  and ( )E E , we then have 
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As equations (S16) and (S17) are equal, we conclude 

1
( ) ( ) ( )
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E E E E EE     .                                                (S18) 

Hence, we find from equations (S11) and (S18) the gradient force component of the Lorentz 

force to be: 

grad ( ) ( )
2

f E E EE

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As EE  is a tensor, the gradient force can also be expressed in tensor form similar to the total 

force given in equation (S10). The total electrical field force (gradient force) becomes  
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grad grad gradd dF f T n
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where the tensor of gradient force: 
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Because the Maxwell stress tensor matrix T  consists of two components: 
grad scatT T T  , 

the total magnetic field force (scattering force) 
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where the tensor of the scattering gradient force is:  
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Finally, the gradient force and scattering force can be calculated by substituting 
gradT  and scatT . 
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