Supporting Information for "Limitations of inclusive fitness" Calculation of the regression method

Benjamin Allen, Martin A. Nowak, Edward O. Wilson

August 12, 2013

In this Supplementary Information we provide a step-by-step calculation of the values of B, C, and R for the example in Figure 1 of the main text, in order to clearly illustrate the regression method. The given values for this example are shown in Table 1.

Calculating B and C

To perform the regression method, we fit the given values to a linear model of the form

$$w_i = W_0 - Cg_i + Bg'_i + \epsilon_i,$$

Table 1: values for regression		
Fitness w	Own genotype g	Partner's genotype g'
4	1	1
0	1	1
0	1	0
2	0	1
0	0	0
0	0	0
2	0	0

Table 1: Values for regression

by finding values of W_0 , C and B that minimize the sum of squares $E = \sum_{i=1}^{N} \epsilon_i^2$. This quantity is minimized when the partial derivatives $\frac{\partial E}{\partial W_0}$, $\frac{\partial E}{\partial C}$, and $\frac{\partial E}{\partial B}$ all vanish. In the case of W_0 this yields the equation

$$0 = \frac{\partial E}{\partial W_0}$$

= $2\sum_{i=1}^N \epsilon_i \frac{\partial \epsilon_i}{\partial W_0}$
= $2\sum_{i=1}^N (w_i - W_0 + Cg_i - Bg'_i) (-1)$
= $-2(8 - 8W_0 + 3C - 3B).$

For C we obtain

$$0 = \frac{\partial E}{\partial C}$$

= $2\sum_{i=1}^{N} \epsilon_i \frac{\partial \epsilon_i}{\partial C}$
= $2\sum_{i=1}^{N} (w_i - W_0 + Cg_i - Bg'_i) g_i$
= $2(4 - 3W_0 + 3C - 2B).$

For B we obtain

$$0 = \frac{\partial E}{\partial B}$$

= $2\sum_{i=1}^{N} \epsilon_i \frac{\partial \epsilon_i}{\partial B}$
= $2\sum_{i=1}^{N} (w_i - W_0 + Cg_i - Bg'_i) (-g'_i)$
= $-2(6 - 3W_0 + 2C - 3B).$

Combining the above results, we arrive at the system of equations

$$8W_0 - 3C + 3B = 8$$

$$3W_0 - 3C + 2B = 4$$

$$3W_0 - 2C + 3B = 6,$$

the solution to which is $W_0 = 5/11, C = 3/11, B = 19/11.$

$\textbf{Calculating}\ R$

 ${\cal R}$ can be calculated directly as

$$R = \frac{\frac{1}{N} \sum_{i=1}^{N} g_i g'_i - \left(\frac{1}{N} \sum_{i=1}^{N} g_i\right) \left(\frac{1}{N} \sum_{i=1}^{N} g'_i\right)}{\frac{1}{N} \sum_{i=1}^{N} g_i^2 - \left(\frac{1}{N} \sum_{i=1}^{N} g_i\right)^2} = \frac{7}{15}.$$