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Plant Materials. The mapping population consisted of 210 recombi-
nant inbred lines (RILs) derived from a cross between ZS97 and
MH63, the parents of Shanyou 63, the most widely cultivated hybrid
in China. Seventy-one introgression lines (ILs) generated from the
same parents as the RILs were used for validating the metabolic
quantitative trait locus (mQTL) results. The rice plants examined
under field conditions were grown in normal rice-growing seasons in
the Experimental Station of Huazhong Agricultural University
(Wuhan, China). All seeds were planted in a seed bed in mid-May,
and transplanted to the field in mid-June. The planting density was
16.5 cm between plants in a row, and the rows were 26 cm apart.
Field management, including irrigation, fertilizer application, and
pest control, followed essentially the normal agricultural practice.
Leaves of the plants were harvested for genomic DNA extraction.

Sample Preparation. The seeds of 210 RILs and the parents were
first soaked in water for 48 h in a chamber (Conviron S10H;
Conviron, www.conviron.com) set at 25 °C and 85% relative
humidity in the dark, and then transferred to another chamber
(Conviron PVG36) for pregermination (35 °C, 85% relative
humidity, dark). Germination of the seeds was checked every 2 h,
and germinated seeds were transferred to a growth chamber
(Conviron S10H) and incubated for 72 h (25 °C, 85% relative
humidity, dark). Seeds from 15 seedlings per line were bulk-
harvested and frozen in liquid nitrogen for metabolite extraction.
One biological replication in 2009 and one in 2010 for each RIL
and three for each parent in both years were sampled, one
replication at a time.
The flag leaves were harvested at heading date in 2009 using

liquid nitrogen from three different plants per line grown in the
field for metabolite extraction. Two biological replications for
each RIL and three for each parent were sampled.

Metabolite Profiling.The freeze-dried samples were analyzed using
a liquid chromatography (LC)–electrospray ionization (ESI)–MS/
MS system (HPLC, Shim-pack UFLC SHIMADZU CBM20A
system; MS, Applied Biosystems 4000 Q TRAP) and an Agilent
6520 accurate-mass time-of-flight mass spectrometry equipped with
a dual ESI electrospray ion source in positive-ion mode. A stepwise
multiple ion monitoring-enhanced product ions was used to con-
struct the MS2T library as previously described (1). Quantification
of metabolites was carried out using a scheduled multiple reaction
monitoring (MRM) method (2). A total of 684 transitions in flag
leaf and 318 transitions in germinating seed were monitored, re-
spectively, with positive polarity. The scheduled MRM algorithm
was used with an MRM detection window of 80 s and the target
scan time of 1.5 s in Analyst 1.5 software. The extracts were ab-
sorbed and filtrated (CNWBOND Carbon-GCB SPE Cartridge,
250 mg, 3 mL; ANPEL).

Statistical Analysis. Metabolite (m-trait) data were log2-trans-
formed for statistical analysis to improve normality. The m-trait
data of the RIL population are the mean of biological replicates
for the LC-MS/MS as shown below: Pm,l = 1/2(Pm,l,1 + Pm,l,2),
where Pm,l represents the m-trait data for metabolite m (m = 1,
2, 3, ..., 684 in flag leaf and m = 1, 2, 3, ..., 318 in germinating
seed) in RIL line l (l = 1, 2, 3, ..., 210), and Pm,l,1 and Pm,l,2 are
the normalized metabolite levels determined in the two repli-
cates, respectively. The values of genetic coefficient of variation
(3) were independently calculated for each metabolite (using the
mean of the biological replicates of the untransformed m-trait

data) as below: σ/μ, σ and μ represent the SD and the mean of
each metabolite in the population, respectively. Broad-sense
heritability (H2) (4) was calculated using the following equation
by treating RILs as a random effect and the biological replica-
tion as the environmental effect: H2 = Var(G)/(Var(G) + Var(E)),
where Var(G) and Var(E) represent variance derived from genetic
and environmental effects, respectively. Pairwise Pearson cor-
relation between metabolites detected was estimated by R (www.
r-project.org). Metabolite networks were constructed based on
the correlation matrices and demonstrated by the program
Cytoscape (5).

QTL Mapping. Bin maps were constructed for the 210 RILs based
on individual SNPs and adjacent bins with the same genotype
were lumped, resulting in a map consisting of 1,619 recombinant
bins without missing data (6, 7). Composite interval mapping
(CIM) (8) was performed for each metabolite using the R/qtl
function cim (9) with a 10-cM scan window and covariates of five
markers. The walking speed was set to zero because the bins
were clearly defined, which was different from the nature of
traditional molecular markers. The likelihood ratio statistic was
computed for each bin. The LOD threshold was set to 3.0 for
each metabolite. A 1.5 LOD-drop support interval was used for
each QTL as described by Wang et al. (10). The QTL additive
effect and variation explained by each QTL were determined
using the linear QTL model involving all of the detected QTLs
using the R function lm (www.r-project.org).

Detection of mQTL Hot Spots. Distribution of mQTLs along the
genome was investigated by dividing the whole genome into 1-cM
partitions, and the number of mQTLs in each segment was counted.
A permutation test was used to assess the statistical significance of
deviation of the observed mQTL distribution per centimorgan from
the expectation based on chance events, assuming a uniform dis-
tribution throughout the genome. In the permutation, each mQTL
was randomly assigned to a 1-cM interval in the map, and the
resulting number of mQTLs in each interval was counted. The
results of 1,000 permutations showed that, with P < 0.01, the cutoff
number of mQTLs per centimorgan by chance alone would be
eight in flag leaf and six in germinating seed, respectively, and
a larger number would be regarded as a mQTL hot spot.

Analysis of Two-Locus Interactions.To identify epistatic interactions
between the mQTL hotspots, bins in hotspots region were
searched pairwise for interactions using two-way ANOVA (11).
The bins most closely associated with each significant mQTL
hotspot were used for epistasis analysis (12) against the known
metabolites in flag leaf and germinating seed, respectively. The
calculation was based on unweighted cell means, and the sums of
squares were multiplied by the harmonic means of the cell sizes
to form the test criteria. Those that showed significant inter-
actions at P ≤ 0.01 were subjected to permutation tests, in which
the positions of the phenotype scores in the dataset were ran-
domized to perform the two-way ANOVA again. This process
was repeated 1,000 times. If no more than 1% of the random
F values was larger than the F from the real data, it was regarded
to be significant at P ≤ 0.01.

Constructs and Transformation.The overexpression vector (pJC034)
for rice was constructed from the gateway overexpression vector
pH2GW7, with the 35S promoter of pH2GW7 replaced by maize
ubiquitin promoter. The OsMaT-2, OsMaT-3, and Os11g26950
overexpression constructs were made by directionally inserting
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the full cDNA sequence first into the entry vector pDONR207
and then into the destination vector pJC034 using the Gateway
recombination reaction (Invitrogen) (Table S3). The constructs
were independently introduced into the Agrobacterium strain
EHA105, and transformation was done as described previously
(13). For each constructs, three independent T1 progeny of over-
expression plants that showed the expression level of transgene
significantly (P < 0.001) correlated with the targeted metabolite
were selected for further analysis.

Expression Analyses. We isolated total RNA from rice using an
RNA extraction kit (TRIzol reagent; Invitrogen) according to the
manufacturer’s instructions. The first-strand cDNA was synthe-
sized using 3 μg of RNA and 200 U of M-MLV reverse tran-
scriptase (Invitrogen) according to the manufacturer’s protocol.
Real-time PCR was performed on an optical 96-well plate in an
ABI Stepone plus PCR system (Applied Biosystems) by using
SYBR Premix reagent F-415 (Thermo Scientific). Actin1 was
used as an endogenous control (Table S3). The expression
measurements were obtained using the relative quantification
method (14).

Full Names of Abbreviations of Metabolites. The full names of
abbreviations of metabolites are as follows: triO-malhex, tricinO-
malonylhexoside; tri O-hex-O-hex, tricin O-hexosyl-O-hexoside; sin
O-hex, sinapoyl O-hexoside; pyr O-hex, pyridoxine O-hexoside; tri
O-hex der, tricin O-hexoside derivatives; api 7-O-rut, apigenin
7-O-rutinoside; suc, sucrose; 3PGA, 3-phosphoglycerate; glu,
L-glutamate; asp, L-aspartate; thr, L-threonine; pyr, pyridoxine;
pyr O-h, pyridoxine O-hexoside; phe, L-phenylalanine; ser, L-
serine; LPCs, lysophosphatidylcholines; fer, ferulic acid; fer O-h,
ferulic acid O-hexoside; sin, sinapic acid; sin O-h, sinapoyl O-
hexoside; nar, naringenin; kae 3-O-h, kaempferol 3-O-hexoside;
O-mque O-h, O-methylquercetin O-hexoside; C-h-nar O-couh,
C-hexosyl-naringenin O-p-coumaroylhexoside; sel, selgin; sel
O-h, selgin O-hexoside; tri, tricin; tri O-h, tricin O-hexoside; tri
4′-O-(R)e O-h, tricin 4′-O-(syringyl alcohol)ether O-hexoside or
tricin 4′-O-(β-guaiacylglyceryl) ether O-hexoside; tri O-r, tricin

O-rutinoside; tri O-h-O-h, tricin O-hexosyl-O-hexoside; tri O-
malh der, tricin O-malonylhexoside derivatives; api, apigenin; api
O-h, apigenin O-hexoside; api O-r, apigenin O-rutinoside; api
C-h, apigenin C-hexoside; C-h-api O-h-O-h, C-hexosyl-apigenin
O-hexosyl-O-hexoside; C-h-api O-(cou/caf)h, C-hexosyl-apigenin
O-(p-coumaroyl/caffeoyl)hexoside; api C-p, apigenin C-pentoside;
C-p-api O-r, C-pentosyl-apigenin O-rutinoside; C-p-api O-(cou/
caf/fer)h, C-pentosyl-apigenin O-(p-coumaroyl/caffeoyl/feruloyl)
hexoside; lut, luteolin; lut O-h, luteolin O-hexoside; C-p-lut O-h,
C-pentosyl-luteolin O-hexoside; lut C-h luteolin C-hexoside; C-h-lut
O-p, C-hexosyl-luteolin O-pentoside; C-h-lut O-couh, C-hexosyl-
luteolin O-p-coumaroylhexoside; chr, chrysoeriol; chr O-h,
chrysoeriol O-hexoside; chr O-malh, chrysoeriol O-malonylhexo-
side; chr O-r, chrysoeriol O-rutinoside; chr C-h, chrysoeriol
C-hexoside; C-h-chr O-(cou/fer)h, C-hexosyl-chrysoeriol O-
(p-coumaroyl/feruloyl)hexoside; C-p-chr O-ferh, C-pentosyl-
chrysoeriol O-feruloylhexoside.

GenBank Accession Numbers for Phylogenetic Analysis. GenBank
accession numbers are in parentheses. The following gene se-
quences were used for the phylogenetic analysis of OsMaT-2 and
OsMaT-3 (Fig. 3A): Ss5MaT (AF405707), Pf5MAT (AF405204),
NtMaT1 (AB176525), Vh3MaT1 (AY500350), Lp3MaT (AY500352),
and the rice gene amino acids sequences from Rice Genome An-
notation Project (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/
rice/). The following gene sequences were used for the phylogenetic
analysis for glucosyltransferases (Fig. S4A): UGT84A1 (z97339),
UGT84A2 (ab019232), UGT78D1 (ac009917), UGT73C6 (ac006282),
UGT79B1 (ab018115), At3RhaT (NM_102790), At3GlcT
(NM_121711), At3AraT (NM_121709), Vv3GlcT (AF000371),
Ph3GlcT (AB027454), Pf3GlcT (AB002818), Hv3GlcT (X15694),
Zm3GlcT (X13501), At5GlcT (NM_117485), Pf5GlcT (AB013596),
Ph5GlcT (AB027455), Vh5GlcT (AB013598), At7RhaT
(NM_100480), At7GlcT (NM_129234), DbB5GlcT (Y18871), NtIS5a
(AF346431), Gt3′GlcT (AB076697), CmF7G2″RhaT (AY048882),
BpA3G2″GlcAT (AB190262), IpA3G2″GlcT (AB192315), and
PhA3G2″RhaT (Z25802).
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Fig. S1. Distribution of broad-sense heritability and R2 values. (A) Distribution of levels of broad-sense heritability of metabolic traits. Broad-sense heritability
(H2) was estimated by considering variations between the two biological replicates as phenotypic variance derived from environmental factors in flag leaf
(black) and germinating seed (gray), respectively. (B) The histogram of R2 values for 1,884 mQTLs in flag leaf. (C) The histogram of R2 values for 937 mQTLs in
germinating seed.
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Fig. S2. Network visualization of metabolites analyzed in flag leaf and germinating seed. (A) Network visualization of codetected metabolites analyzed in
flag leaf and germinating seed. Metabolites are represented as nodes, and their correlation coefficient values as edges. The absolute values of Pearson
correlation coefficient values above the threshold (r2 = 0.4) are shown. (B) Network visualization of flavonoids analyzed in flag leaf and germinating seed.
Flavonoids are represented as nodes, and their correlation coefficient values as edges. The absolute values of Pearson correlation coefficient values above the
threshold (r2 = 0.5) are shown.
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Fig. S4. Functional identification of Os11g26950. (A) Phylogenetic analysis glucosyltransferase gene in rice with glucosyltransferase genes in other species. The
neighbor-joining tree was constructed using aligned full-length amino acid sequences. Bootstrap values from 1,000 replicates were indicated at each node. (Bar:
0.1-aa substitutions per site.) GenBank accession numbers are given in SI Materials and Methods. Bar plot for the mRNA level of Os11g26950 (B) and the content
of m0760-L (C) in rice transgenic individuals (T1), respectively. ZH11 indicates the transgenic background variety. All data are given as mean ± SEM (n = 3).
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Table S1. Statistics of metabolic quantitative trait loci (mQTLs) on the chromosomes

Chr
Chromosome
length, cM

Total mQTLs of
flag leaf

Density of flag leaf,
mQTLs/cM

Exp* of
flag leaf

SR† of
flag leaf

Total mQTLs of
seed

Density of seed,
mQTLs/cM

Exp* of
seed

SR† of
seed

1 200.6 326 1.6 233 6.1 111 0.6 116 −0.4
2 175.4 152 0.9 203 −3.6 61 0.3 101 −4.0
3 187.5 113 0.6 217 −7.1 53 0.3 108 −5.3
4 127.2 151 1.2 147 0.3 38 0.3 73 −4.1
5 116.0 60 0.5 134 −6.4 215 1.9 67 18.1
6 144.4 300 2.1 167 10.3 200 1.4 83 12.8
7 135.4 231 1.7 157 5.9 72 0.5 78 −0.7
8 120.4 100 0.8 140 −3.3 35 0.3 69 −4.1
9 107.2 108 1.0 124 −1.5 42 0.4 62 −2.5
10 85.3 135 1.6 99 3.6 32 0.4 49 −2.4
11 116.7 123 1.1 135 −1.1 50 0.4 67 −2.1
12 109.3 85 0.8 127 −3.7 28 0.3 63 −4.4
Total 1,625.5 1,884 1.2 1,884 937 0.6 937

*Expected number of mQTLs based on chromosome size. χ2 = 322.92 (P < 2.2e−16) in flag leaf and χ2 = 605.38 (P < 2.2e−16) in seed for the test of goodness-of-fit
between the observed and expected numbers of mQTLs on the 12 chromosomes.
†SR: standardized residue [=(observed – expected)/√expected], which follows a normal distribution asymptotically. Thus, an absolute SR value larger than 2.33
indicates statistical significance at P < 0.01. A positive value indicates that the observed number is greater than expected.

Table S2. Flavonoid pathway correlated coexpressed genes with Os05g48010

Correlation* MSU_locus Annotation

0.86 LOC_Os02g26810 Transcinnamate 4-monooxygenase, putative, expressed
0.76 LOC_Os08g34790 4-Coumarate-CoA ligase 2, putative, expressed
0.75 LOC_Os10g41020 Flavonol synthase/flavanone 3-hydroxylase, putative, expressed
0.75 LOC_Os02g41670 Phenylalanine ammonia-lyase, putative, expressed

*Data from Collection of Rice Expression Profiles (http://crep.ncpgr.cn/crep-cgi/home.pl).

Table S3. Primers used in this study

Primer name Sequence Purpose

OsMaT-2OXF 5′-attB1-ATGGCGCCCGCGACACAA-3′ Vector construction
OsMaT-2OXR 5′-attB2-CTACGCCGGGGAGTGGCC-3′ Vector construction
OsMaT-3OXF 5′-attB1-AGACCATGGCGCCGCCAC-3′ Vector construction
OsMaT-3OXR 5′-attB2-CACGCTAGTTGCATTGGGAAGA-3′ Vector construction
Os11g26950-OXF 5′-attB1-CCGTTCACTGCCCTCGAT-3′ Vector construction
Os11g26950-OXR 5′-attB2-GCGTGACGTTCCGTTTTCAG-3′ Vector construction
oja703 5′-CCTTCATACGCTATTTATTTGCTTG-3′ Positive test
OsMaT-2F 5′-AGGTGGACGTCGTGTCCGTG-3′ Expression analysis
OsMaT-2R 5′-GAACCTCTCCATCCGCTCCG-3′ Expression analysis
OsMaT-3F 5′-ACGCTCATCCGCGACGTA-3′ Expression analysis
OsMaT-3R 5′-GGCGCCTTGAACAGATCTTT-3′ Expression analysis
Os11g26950-F 5′-AATGGCGGGAGTTCTTGATG-3′ Expression analysis
Os11g26950-R 5′-TCAGCCCTTGAGCCTTCT-3′ Expression analysis
Actin1F 5′-TGGCATCTCTCAGCACATTCC-3′ Expression analysis
Actin1R 5′-TGCACAATGGATGGGTCAGA-3′ Expression analysis

Dataset S1. Metabolite reporting checklist and recommendations for liquid chromatography–mass spectrometry (LC-MS)

Dataset S1
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Dataset S2. Widely targeted metabolites and metabolic quantitative trait loci (mQTLs) results in flag leaf and germinating seed

Dataset S2

Metabolite indicates the number of metabolite. Q1, precursor ions. Q3, product ions. Time, retention time. MH/ZS, the ratio of intensity between Minghui 63
and Zhenshan 97. Chr indicates chromosomal location of the mQTL for the metabolite. LOD, the LOD score of the mQTL. Var, the amount of intensity variation
of the metabolite explained by the mQTL. Add, additive effect, the positive value indicates that the allele from Minghui 63 increases phenotypic value. Inf.cM,
the genetic position of the inferior support interval bound in centimorgans on each chromosome. Peak.cM, the peak of genetic position. Sup.cM, the superior
support interval bound. Inf.Mb, the physical position of the inferior support interval bound in Mb on each chromosome. Peak.Mb, the peak of physical position.
Sup.Mb, the superior support interval bound.

Dataset S3. Results of analysis of two-locus interactions

Dataset S3

Dataset S4. Genotype and profiles of 64 metabolites of the 71 introgression lines (ILs) and the parental lines

Dataset S4

A, Zhenshan 97 genotype; B, Minghui 63 genotype; H, heterozygous genotypes.

Dataset S5. The candidate gene list for metabolic quantitative trait loci (mQTLs) results

Dataset S5
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