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Human Psychophysics: Main Experiment. Stimuli. The stimulus was a
drifting Gabor whose orientation s was drawn from one of two
category distributions. On each trial, category 1 or category 2 was
selected with equal probability. Categories distributions were
normal with means 0° (horizontal, drifting to the right) and SDs
σ1 = 3° and σ2 = 12°, respectively (Fig. 1A). During training, the
Gabor had 100% contrast. During testing, the contrast of the Gabor
was 1.8%, 3.0%, 5.0%, 8.2%, 13.5%, or 22.3%. Stimuli were
delivered using Psychophysics Toolbox for Matlab (Mathworks).
Procedure. Six human subjects participated (one female). Each
subject completed five sessions, each consisting of 816 trials, or-
ganized as follows: 72 training, 216 testing, 48 training, 216 testing,
48 training, and 216 testing. The last two training blocks served to
refresh observers’ memories of the category distributions. In total,
each subject completed 3,240 testing trials, equally divided
among six contrast levels, for a total of 540 trials per contrast
level. Contrast was chosen randomly on each trial. Exemplars of
stimuli in each category were shown at the beginning of each
session. A trial proceeded as follows (Fig. 1C). Subjects fixated
on a central cross. The Gabor appeared at fixation for 300 ms
during training and for 50 ms during testing. Immediately after-
ward, subjects indicated through a key press whether they be-
lieved the stimulus belonged to category 1 or category 2. During
training, the fixation turned green if the response was correct and
red if it was incorrect. During testing, no such feedback was given.
After each block, the total score on that block was shown.

Human Psychophysics: Control Experiment.The control experiment was
identical to themain experiment except for the following differences.
Stimuli. Stimuli were generated as in the main experiment but then
rotated clockwise by 45°. An interrupted black diagonal line at
the mean orientation was shown continuously to provide a ref-
erence. During testing, stimulus contrast could take values 1.1%,
1.8%, 3.0%, 5.0%, 8.2%, 13.5%, 22.3%, or 36.8%.
Procedure. Six human subjects participated (five females). Each
subject completed five sessions, each consisting of 816 trials,
organized as follows: 72 practice, 288 testing, 72 practice, and
288 testing. In total, each subject completed 2,880 testing trials,
equally divided among eight contrast levels, for a total of 360
trials per contrast level.

Monkey Psychophysics.Monkeys engaged in a similar task to humans.
The Gaussian category distributions (Fig. 1A) had a mean of
vertical (grating drifting to the right) and widths σ1 = 3° and
σ2 = 12° for monkey A and σ1 = 3° and σ2 = 15° for monkey L.
Contrast was 1%, 2%, 3%, 5%, 8%, 10%, 20%, 35%, 50%, 70%,
or 100% for monkey A and 1.25%, 2.5%, 5%, 10%, 15%, 17%,
20%, 25%, 30%, or 35% for monkey L. Monkey A completed
100,267 trials. Monkey L completed 184,838 trials.
A trial proceeded as follows. A fixation point appeared, and the

monkey was required to fixate on it for 300 ms. A drifting grating
then appeared for 500 ms, after which the monkey could select
a stimulus category. Through training, the narrow distribution was
associated with a red target and the wide distribution with a green
target. The targets only appeared after the stimulus period, and
the locations of the red and green targets were randomized be-
tween left and right. The monkey reported category through a
saccade to the red or the green target. The monkey received
a juice reward for each correct categorization response. Eye
position was tracked using a custom-built field-programmable
gate-array-based optical eye tracker running at 250 Hz. Stimulus

and reward were controlled by a custom state system running
LabView (National Instruments). Visual stimulation was de-
livered through a separate computer running Psychophysics
Toolbox for Matlab (Mathworks).

Derivation of the Optimal Decision Rule. Starting from Eq. 2, we
substitute the expressions for the noise distribution and the
category-conditioned stimulus distribution (with C equal to 1
or 2) and evaluate the integral:
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Substituting Eq. S1 in Eq. 1, we find
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which is Eq. 3. Because x2 is nonnegative, d is bounded from
above by k1, which in turn is a decreasing function of σ. Therefore,
the posterior probability of category 1 is bounded from above
bypðC= 1  j  x= 0; σ = 0Þ= 1

1+ e−k1
= σ2

σ1 + σ2
. The decision rule is d >

0, which translates to jxj<
ffiffiffiffi
k1
k2

q
  ≡  k in the main text.

List ofModels.The decision rules and parameters sets of all models
tested are listed in Table S1.

Response Probability. All model fits and comparisons are based
on the probability that an observer reports category 1 for a given
stimulus s and given uncertainty level σ. Recall that the decision
rule is of the form jxj< kðσÞ, where k(σ) is some function of σ (as
given by Table S1). Then, the probability that the observer reports
category 1 for given s is straightforwardly computed to be
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where erf denotes the error function. In other words, the psycho-
metric curve as a function of s at a given contrast is predicted to
be a difference of two cumulative normal distributions.

Model Fitting. For a given model, we denote its set of parameters
collectively by a vector θ. We aimed to find the parameter com-
bination θ that maximized the parameter likelihood function. The
parameter likelihood function is the probability of all of a single
subject’s responses given the presented stimuli and the parame-
ters. Assuming conditional independence between trials, the log
of the parameter likelihood function is

LLðθ;modelÞ= log  pðdata  j  θ;modelÞ
= log ∏

Ntrials

i=1
p
�
Ĉi   j  si; ci;θ

�
:

=
XNtrials

i=1

log  p
�
Ĉi   j  si; ci;θ

�
;

where the product and the sum are over all of a single subject’s
trials, and si, ci, and Ĉi are the orientation, contrast, and subject’s
category response on the ith trial, respectively.

Qamar et al. www.pnas.org/cgi/content/short/1219756110 1 of 9

www.pnas.org/cgi/content/short/1219756110


We implemented the optimization of the log likelihood function
using the Matlab program minimize.m (Carl Rasmussen, www.
gaussianprocess.org/gpml/code/matlab). This software is based on
a conjugate gradient algorithm and requires expressions for the
first partial derivatives of the log likelihood function, which can
straightforwardly be calculated in our models. We typically per-
formed an initial stage with 1,000 randomly chosen initial pa-
rameter combinations and a maximum of 15 line searches for
each, followed by a second stage where we took the 50 best pa-
rameter combinations found in the first stage and used them as
initial conditions for a maximum of 1,000 line searches each. Of
the 50 resulting parameter combinations, we took the one with
the highest likelihood. We confirmed the results of the optimi-
zation using a custom-built genetic algorithm with a population
size of 800, one child per parent, a 50% survival rate (including
parents), and 650 generations. Although based on different princi-
ples, this algorithm produced maximum log likelihood values that
were typically within one point from those obtained using minimize.
m. We are therefore reasonably confident that we found the global
maxima in parameter space.
Maximum-likelihood estimates of parameters in the five models

are given in Table S2.

Model Comparison. Making use of the parameter likelihood func-
tion, we applied Bayesian model comparison, also called Bayes’
factors (1, 2), to compare the goodness of fit of models. This
method involves calculating the probability of the subject’s
responses under a model given the presented stimuli on in-
dividual trials by integrating the parameter likelihood over the
parameters of the model

pðdata  j modelÞ=
Z

pðdata  j  θ;modelÞ pðθ  j modelÞdθ:

The result is also called the marginal likelihood of the model. We
assumed that each parameter θi takes values on an interval of size
R(θi), and that the prior distribution p(θ jmodel) factorizes over
parameters and is for each parameter uniform on its interval.
Thus, pðθ  j modelÞ= ∏dimθ

i=1
1

RðθiÞ. Moreover, we used Laplace’s ap-
proximation to compute the integral (2)
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where θ* is the maximum-likelihood parameter set and H(θ*)
is the Hessian (matrix of second derivatives) of −LL evaluated
at θ*. We then compared the approximated values of the log
marginal likelihood between models.
The second method for model comparison was the Akaike

information criterion (AIC) (3). Although it was derived under
stringent assumptions, this measure is often used without regard
to those assumptions. The AIC is equal to

AIC= − 2LLðθ pÞ+ 2 · number of parameters:

For ease of comparison with the Bayes factor results, we multi-
plied AIC by −0.5: −0.5AIC = LL(θ*) − number of parameters.

Model comparison results are given in Tables 1 and 2 for the
main experiment (humans and monkeys) and in Tables S3 and S4
for the control experiment (humans). Parameter ranges are given
in Table S1.

Psychometric Curves.After fitting each model, we computed model
fits to the psychometric curves. To compute the model fits for the
psychometric curves as a function of contrast and orientation
(Figs. 2C, 3C, etc.), we averaged, separately for every subject,
contrast, and orientation bin, Eq. S3 with parameters substituted
across all values of s presented to that subject at that contrast in
that orientation bin. In these figures, orientation was binned into
13 bins with centers equally spaced between −18.46° to 18.46°
(this means that the data were cut off at ±20°).
To compute the model fits for the psychometric curves as a

function of contrast and category (Figs. 2B, 3B, etc.), we averaged,
separately for every subject, contrast, and true category, Eq. S3
with parameters substituted across all values of s presented to that
subject at that contrast with that true category. This procedure
explains why the model fits do not look smooth: they are based
on the orientations in the actual experiment, which were drawn
randomly from their respective category-conditioned distributions.
Finally, to compute the model fits for accuracy as a function of

contrast (Figs. 2A, 3A, etc.), we averaged, separately for every sub-
ject and contrast, the probability of a correct response across all
values of s presented to that subject at that contrast. The probability
of a correct response was equal to Eq. S3 when the true category
was 1 on that trial, and 1 minus Eq. S3 when the true category was 2.
Throughout the paper, root mean squared error (RMSE) was

computed based on vectorized forms of the subject-averaged
data and corresponding subject-averaged model fits across all
conditions in a plot.

Flexible Model.The flexible model was designed to provide a model-
neutral estimate of the decision boundary as a function of contrast
(Figs. 2 D–F and 3D and Figs. S1D and S2D). This model has
the following parameters: α, β, and γ to parametrize the relation-
ship between σ and contrast, lapse rate λ, and the boundary at each
contrast, kc. We compared the boundaries estimated by the flexible
model with those predicted by the Opt-P, Lin-σ, Quad-σ, and Fixed
models. To this end, in each of these four models, we fixed α, β, γ,
and λ to their estimates from the flexible model, and then fitted
the remaining parameters (p1 for Opt-P, k0 and σp for Lin-σ and
Quad-σ, and k0 for Fixed), and finally substituted all parameters in
the model’s expression for the decision boundary. These fits pro-
duced the shaded areas in Figs. 2D and 3D and Figs. S1D and S2D.

Orientation Discrimination Experiment. To obtain an independent
measure of subjects’ sensory noise level, we conducted an orientation
discrimination task. The same six subjects participated as in the main
categorization experiment. Subjects determined whether an oriented
Gabor similar to the one used in the categorization task was tilted
clockwise or counterclockwise with respect to the horizontal. This
task was done at the same contrast levels as used in the categori-
zation task. Orientation was ±1.2°, ±3°, ±5°, or ±8°, all with equal
probability (method of constant stimuli). We estimated the sensory
noise parameter σ separately at each contrast level by fitting a cu-
mulative normal distribution using maximum-likelihood estimation.
To obtain Fig. 2E, we first computed, for each subject and each

contrast, an estimate of σ using the equation

σ̂ðcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α̂c
�−β̂

+ γ̂

r
; [S4]

where α̂; β̂; γ̂ are estimates obtained from the flexible model. We
then scattered those against the corresponding sensory noise
estimates from the discrimination experiment.
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In the section Flexible Model, we mentioned that we used the
estimates of α, β, and γ from the flexible model to compute the
predictions of the Opt-P, Lin-σ, and Quad-σ models for the de-
cision boundaries (Fig. 2D). This computation was done via an
estimate of σ as given by Eq. S4. To obtain Fig. 2F, we replaced, for
each subject and each contrast, those estimates by the estimates
obtained from the discrimination experiment, changing nothing
else; in particular, the remaining parameters were not refitted.

Neural Likelihood Function.We use the Poisson-like distribution in
Eq. 5 to model the variability of a population of sensory input
neurons

pðr  j  s; gÞ=φðr; gÞehðsÞ·r:

As a consequence, the likelihood function of the stimulus is

LrðsÞ= pðr  j  sÞ=
Z

pðr  j  s; gÞpðgÞdg

=
�Z

φðr; gÞpðgÞdg
�
ehðsÞ·r ≡ΦðrÞehðsÞ·r:

The likelihood of category C is

pðr  j CÞ=
Z

LrðsÞpðs  j  CÞds=ΦðrÞ
Z

ehðsÞ·rpðs  j CÞds:

To make progress, we need to make assumptions about h(s). We
will assume that it is a quadratic function of s, so that the likelihood
Lr(s) is an (unnormalized) Gaussian. Under this assumption, we
can write h(s) as

hðsÞ= −
1
2
s2a+ sb;

where a and b are constant vectors. Then the stimulus likelihood
function is

LrðsÞ=ΦðrÞehðsÞ·r =ΦðrÞe−1
2s

2a·r+sb·r∝ exp

0
B@−

�
s−

b · r
a · r

�2
2ða · rÞ−1

1
CA: [S5]

This expression shows that the maximum-likelihood estimate of
the stimulus is equal to b · r

a · r, and the variance of the normalized
likelihood function over the stimulus is equal to 1

a · r. These
quantities correspond to x and σ2 in the behavioral model, re-
spectively. In the special case of independent Poisson variability
and Gaussian tuning curves (4), we have

hiðsÞ= log  fiðsÞ= −

�
s− sprefi

�2

2σ2tc
= −

1
2σ2tc

s2 +
sprefi

σ2tc
s+ constant:

where si
pref is the preferred stimulus of the ith neuron, and σtc is the

width of tuning curve. Therefore, ai = 1/σtc2 and bi = si
pref/σtc2. The

mean of the likelihood function over the stimulus is b · r
a · r=

PN

i=1
ris

pref
iPN

i=1
ri
,

which is the center-of-mass (population vector) decoder. The
variance of the normalized likelihood function is 1

a · r=
σ2tcPN

i=1
ri
.

Substituting this mean and variance into Eq. 3 gives us Eq. 6.

Neural Networks.Most neural network methods were similar to the
ones described in our earlier work on visual search (5). Input
consisted of activity in a population of 41 independent Poisson

neurons with Gaussian tuning curves [f1(s),..,f41(s)], with fiðsÞ=

ge
−
ðs− spref

i
Þ2

2σ2tc , where σtc = 10° and preferred orientations si
pref ranged

from −60° to 60° in steps of 3°. Our results are insensitive to
these numerical choices. Gain was varied, as it represents the
effect of contrast. We considered three networks, each of which
is characterized by a set of basis functions

RQDN =
	

rirj
1+V · r+ rTVR




RLIN = ½1; ri�
RLIN =

�
1; ri; rirj

�
:

The output activity z is now a linear combination of the basis
functions in the network, with fixed coefficients. We further im-
pose the condition that the output activity z is also Poisson-like:
pðz  j  C; gzÞ=φzðz; gzÞeHðCÞ·z. The log likelihood ratio over C en-
coded in z is thenlog pðz  j C= 1Þ

pðz  j C= 2Þ= ðhðC= 1Þ−hðC= 2ÞÞ · z, which
we write shorthand as ΔH · z. The network approximation
to the log likelihood ratio under the assumption of Poisson-like
output is then

dnetworkðr;wÞ=Δh · z=w · rnetwork;

where Rnetwork is RQDN, RLIN, or RQUAD and w is the vector of all
network parameters (W, v, and V). The network approximation
to the posterior is

qðC  j  r;wÞ= 1
1+ e−Cdnetworkðr;wÞ

:

Network Training.We trained networks by minimizing the Kullback-
Leibler distance between the network posterior and the optimal
posterior over category using stochastic gradient descent. The
Kullback-Leibler distance, averaged over r, is

hDKLir =
X
r

pðrÞ
X2
C=1

pðC  j  rÞlog pðC  j  rÞ
qðC  j  r;wÞ

=
X
r;C

pðC; rÞlog pðC  j  rÞ
qðC  j  r;wÞ:

The gradient is
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X
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= −
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≈−
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�
samples  of   ðr;CÞ

;

where the last step is a sampling approximation. The change in
weights from one iteration to the next is proportional to this gradient
and has opposite sign. This produces the learning rule
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wk+1 =wk + α


Cð1− qðC  j  r;wÞÞ ∂

∂w
dðr;wÞ

�
samples of ðr;CÞ

; [S6]

where α is the learning rate. We used an adaptive method (6) to
adjust the learning rate. We drew 10,000 trials on each iteration, and
terminated learning after 10,000 iterations for the QDN network
and after 100,000 iterations for LIN and QUAD. We then tested on
100,000 trials. For the QDN network, the initial values of the pa-
rameters were chosen according to Eq. 6. For LIN and QUAD, they
were given by a first- and second-order Taylor expansion of Eq. 6
around the mean activity, hri, respectively, except that the weight to
the constant term was set to 0 for better convergence. Information
loss was measured as the average Kullback-Leibler distance between
the optimal posterior and the network posterior, normalized by the
mutual information between the input activity and category:

δI
I
=
hDKLir
IðC; rÞ =

X
r;C

pðC; rÞlog pðC  j  rÞ
qðC  j  r;wÞX

r;C
pðC; rÞlog pðC  j  rÞ

pðCÞ

=
hlog  pðC  j  rÞ− log  qðC  j  r;wÞisamples of ðr;CÞ

hlog  pðC  j  rÞ− log  pðCÞisamples of ðr;CÞ
:

Note that this number can be greater than 1.

Visualization of Network Performance. To appreciate the ability of
the QDN network to approximate a highly nonlinear decision

surface, we plotted the optimal log likelihood ratio d as a
function of the input quantities a · r and b · r (Fig. S3A, surface),
along with the log likelihood ratios obtained from the QDN
network. The plane at d = 0 separates the network categori-
zation decisions well, showing that the network makes the same
decisions as the Bayesian observer. More importantly, the
network decision variable follows the optimal decision variable
closely, despite its highly nonlinear shape, even at low values of
precision (a · r < 1 deg−2, corresponding to a sensory un-
certainty of more than 1°). This similarity shows that the net-
work does not only make near-optimal categorization decisions
(and thus adjust the decision boundary on every trial based on
sensory uncertainty), but also correctly computes decision
confidence (absolute value of d), regardless of the quality of
the input.
Fig. S3B shows the pattern of weights learned by the QDN

network. These weights are multiplied by the basis functions cor-
responding to all possible products of activities of two input
neurons (shown in Fig. S3C for three values of orientation).
Positive (negative) weights indicate that activity of the corre-
sponding basis functions contributes to evidence for category 1
(2). The observed pattern makes intuitive sense: category 1 pop-
ulation activity tends to be more symmetric around zero than
category 2 activity; therefore, simultaneously high activity on both
sides of zero is evidence for category 1, whereas high activity in
a subpopulation with preferred stimuli away from zero is
a telltale sign of category 2. The basis function activity patterns
in Fig. 6C would lead to categorization decisions 2, 1, and
2, respectively.
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Fig. S1. As in Fig. 2, but for the human control experiment (central orientation 45° clockwise with respect to vertical).
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Fig. S2. As in Fig. 3, but for monkey A.
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The d = 0 plane (gray) separates the optimal Category 1 and 2 reports. Dots represent the QDN network log likelihood ratios, ΔH · z, for different com-
binations of gain and orientation. Patches of same-colored dots along the a·r-axis correspond to same-gain trials. Cool colors represent network reports of
Category 1 and warm colors correspond to network reports of Category 2. The QDN network not only provides correct categorizations, but also a close
approximation to the optimal log likelihoods. (B) Quadratic weights in the trained QDN network. Negative values are in blue, positive ones in red. (C) Average
basis function activity in the QDN network for orientations s=−15°, s = 0°, s = 15°. Each entry in the matrix represents a quadratic basis function obtained by
multiplying the spike counts of two input neurons. Zeros are in blue, the highest values in red. The inner product of the weights in (b) with the s=−15° and s =
15° activity yields a negative log likelihood ratio (evidence for Category 2), while with the s = 0° activity it results in a positive log likelihood ratio (evidence
for Category 1).

Table S1. Decision rules and parameter sets of all models

Model Decision rule jxj<k(σ), with k(σ)=. . . Parameters

Probabilistic computation
Opt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ2 + σ21

��
σ2 + σ22

��
σ22 − σ21

�−1
log

σ2 + σ22
σ2 + σ21

r
   α, β, γ, λ

Opt-P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σ2 + σ21

��
σ2 + σ22

��
σ22 − σ21

�−1�
log

σ2 + σ22
σ2 + σ21

+ 2 log p1
1−p1

�r
   α, β, γ, λ, p1

Lin-σ k0
�
1+ σ

σp

�
α, β, γ, λ, k0, σp

Quad-σ k0
�
1+ σ2

σ2p

�
α, β, γ, λ, k0, σp

Nonprobabilistic computation
Fixed Constant k0 α, β, γ, λ, k0
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Table S2. Parameter estimates and ranges

Model Parameter Range Humans main Humans control Monkey A Monkey L

Opt α (0,50] 10.2 ± 1.0 14.3 ± 2.6 32.3 8.11
β (0,8] 2.32 ± 0.12 3.14 ± 0.33 6.79 2.87
γ (0,30] 3.20 ± 0.67 11.5 ± 3.0 9.91 18.2
λ (0,0.5] 0.108 ± 0.031 0.125 ± 0.065 0.019 0.051

Opt-P α (0,50] 9.2 ± 1.5 11.4 ± 3.7 34.5 13.3
β (0,8] 2.22 ± 0.26 2.62 ± 0.56 7.97 4.46
γ (0,30] 2.80 ± 0.27 9.8 ± 1.3 8.29 17.1
λ (0,0.5] 0.095 ± 0.026 0.054 ± 0.018 0.044 0.068
p1 [0.25, 0.75] 0.501 ± 0.024 0.514 ± 0.036 0.531 0.514

Lin-σ α (0,50] 8.6 ± 1.5 11.4 ± 3.4 25.9 11.9
β (0,8] 2.11 ± 0.13 2.59 ± 0.38 4.07 3.69
γ (0,30] 3.47 ± 0.43 10.8 ± 1.5 9.27 18.2
λ (0,0.5] 0.070 ± 0.024 0.063 ± 0.030 0.032 0.050
k0 (0,15] 3.14 ± 0.46 4.7 ± 1.0 0.440 0.614
σp (0,50] 3.29 ± 0.67 16.4 ± 7.2 0.213 0.352

Quad-σ α (0,50] 7.1 ± 1.8 9.9 ± 3.4 26.0 3.20
β (0,8] 1.78 ± 0.17 2.40 ± 0.41 4.21 1.66
γ (0,30] 2.65 ± 0.37 10.2 ± 1.4 8.73 17.2
λ (0,0.5] 0.078 ± 0.025 0.064 ± 0.032 0.037 0.047
k0 (0,15] 4.94 ± 0.32 6.78 ± 0.41 5.10 5.55
σp (0,50] 6.37 ± 0.68 15.4 ± 2.7 5.17 6.42

Fixed α (0,50] 21.3 ± 6.5 12.4 ± 7.3 7.79 9.61
β (0,8] 5.3 ± 3.0 2.02 ± 0.69 0.98 1.53
γ (0,30] 5.47 ± 0.81 8.5 ± 2.4 7.06 18.2
λ (0,0.5] 0.120 ± 0.038 0.109 ± 0.038 0.081 0.070
k0 (0,50] 6.42 ± 0.32 8.13 ± 0.66 7.23 8.35

Disclaimer: The meaningfulness of parameter estimates depends on the goodness of fit of the model.

Table S3. Model comparison using AIC for main experiment

Numbers are AIC multiplied by −0.5 for every model and every subject. Shaded in green are the models whose values fall within
log(30) of the value of the best model. The Fixed model is never among them. DIFF, difference between the Fixed model and the best
probabilistic model.
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Table S5. Model comparison using AIC for control experiment

Subject Opt Opt-P Lin-σ Quad-σ Fixed DIFF

Human 1

Human 2

Human 3

Human 4

Human 5

Human 6

−1,211.1

−1,089.2

−1,734.9

−1,602.8

−1,149.8

−1,176.1

−1,165.6

−961.1

−1,689.6

−1,554.9

−1,146.5

−1,111.8

−1,164.5

−960.7

−1,670.0

−1,547.5

−1,101.5

−1,113.0

−1,166.1

−961.7

−1,668.8

−1,546.8

−1,099.4

−1,100.0

−1,170.4

−1,016.5

−1,675.9

−1,559.4

−1,101.1

−1,273.0

−5.9

−55.9

−7.0

−12.6

−1.7

−173.0

See Table S3 for description.

Table S4. Model comparison using log marginal likelihood for control experiment

Subject Opt Opt-P Lin-σ Quad-σ Fixed DIFF

Human 1

Human 2

Human 3

Human 4

Human 5

Human 6

−1,216.8

−1,093.6

−1,738.4

−1,607.9

−1,156.4

−1,184.2

−1,175.4

−968.1

−1,701.7

−1,565.3

−1,156.0

−1,120.4

−1,173.5

−970.5

−1,678.6

−1,558.2

−1,111.0

−1,128.9

−1,175.7

−972.4

−1,678.8

−1,557.5

−1,110.6

−1,113.9

−1,179.1

−1,021.4

−1,685.7

−1,568.5

−1,112.6

−1,292.2

−5.7

−53.3

−7.1

−11.0

−1.9

−178.2

See Table 1 for description.

Qamar et al. www.pnas.org/cgi/content/short/1219756110 9 of 9

www.pnas.org/cgi/content/short/1219756110

