Supplemental Information

Open-Channel Structures of the Human Glycine Receptor α1 Full-Length Transmembrane Domain

David Mowrey,^{§°} Tanxing Cui,^{†°} Yuanyuan Jia,[†] Dejian Ma,[†] Alexander M. Makhov,[¶] Peijun Zhang,[¶] Pei Tang,^{†‡§}* and Yan Xu^{†‡¶}* Departments of [†]Anesthesiology, [‡]Pharmacology and Chemical Biology, [§]Computational and Systems

Biology, and [¶]Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260

[°]These individuals contributed equally to the work as co-first authors.

SUPPLEMENTAL DATA

	220	23	30	240	2	50	2	60	270	28	30
GlyR TM1234	MLERQLGY	YLIQLYI	PSLLIVI	LSWISFW	IINLDAA	PAR	VGLGITT	VLTLTTÇ	SSGSRA	SLPKVSY	VK-AIDIWLAV
GlyR al GluCl	HLERQMGY QLKREF <u>SF</u>	YLLQLYI	PSLLIVI PSCMLVI	LSWISFN VSWVSFN	IINMDAA IFDRTAI	PAR PAR	VGLGITT VTLGVTT	VLTMTTÇ LLTMTAÇ	SSGSRA	SLPKVSY QLPPVSY:	VK-AIDIWMAV IK- <u>AIDVWIGA</u>
GABAA al 2BG9 al	HLKRKIGY IMQRIPL <u>Y</u>	FVIQTYLI FVVNVIII	PCIMTVI PCLLFSF	LSQVSFW	ILNRESV	PAR —EK	TVFGVTT MTLSISV	VLTMTTI LLSLTVF	SISARN	SLPKVAY LIPSTSS	AT-AMDWFIAV AVPLIG <u>KYMLF</u>
nAChR a4	VIRRLP <u>LF</u>	YTINLII	PCLLISC	LTVLVFY	LPSEC	-EK	ITLCISV	LLSLTVE	LLLITE	IPSTSL	VIPLI <u>GEYLLF</u>
5HT3A GLIC	VIRRRPLF RISRQYF <u>S</u>	YVVSLLLI	PSIFLMV PMLFILF	MDIVGFY ISWTAFN	LPPNSG	-ER EAN	VSFKITL VTLVVST	LLGYSVH LIAHIAH	'LIIVSD' 'NILVET	TLPATAIO NLPKTPYN	GTPLIGVYFVV MT- <u>YTGAIIFM</u>
ELIC	DAVRN <u>PSY</u>	YLWSFILI	PLGLIIA	ASWSVFW	ILES <u>F</u>	SER	LQTSFTL	MLTVVA	AFYTSN	ILPRLPY:	TT- <u>VIDQMIIA</u>
	290	300	31	0	390		400	41	0	420	
GlyR TM1234	CLLFVFSA	LLEYAAV	NFVSRQ	REFGGGG	FIQRAKI		ISRIGF	PLAFLIF	NLFYWI		DEFE <mark>HHHHH</mark>
GlyR al GluCl	CLLFVFSA CMTFIFCA	LLEYAAV LLEFALV	NFVSRQ <u>NHIAN</u> A	GT <u>TE</u>	-IQRAKI WNDISKI	KIDF RVDI	ISRIGFI ISRALFI	PMAFLIF PVLFFVF	NMFYWI NILYWSF	IYKIVRRE RF <mark>G</mark> HHHH	EDVHNQ IHH
GABAA al 2BG9 al	CYAFVFSA TMIFVISS	LIEFATV	NYFTKR INTHHR		-FNSVSI -KYVAM	KIDF VIDH	RLSRIAFI IILLCVFN	PLLFGIF 4LICIIG	NLVYWAT TVSVFAC	TYLNREPÇ GRLIELSÇ	QLKAPTPHQ QEG
nAChR a4	TMIFVTLS	SIVITVFV	<u>LN</u> VHHR		-KYVAM	VIDF	RIFLWMF	IVCLLG	TVGLFLI	PPWLAGMI	:
5HT3A GLIC	CMALLVIS IYLFYFVA	SLAETIFI VIEVTVQ	VRLVHK HYLKVE	S	-LRVGSV Q <u>PARAA</u>	VLDK SITF	LLFHIYI RASRIAFI	LLAVLAY	SITLVMI NIILAFI	LWSIWQYA L <u>F</u> FGF	L

Figure S1. The sequence of the 150-residue protein under study (hGlyR- α 1 TM) aligned with the transmembrane (TM) domains of the native human GlyR- α 1 subunit (GlyR- α 1), the Glutamate Chloride channel from *C. elegans* (GluCl), four representative members in the Cys-loop receptor superfamily (GABA_A α 1 subunit, nAChR α 1 and α 4 subunits, and 5HT₃ α subunit), and two bacterial homologues (ELIC and GLIC). An artificial loop between TM3 and TM4 domains and a 6-His tag at the C-terminal are shaded in light purple. Solid lines below six sequences mark the experimentally determined TM helices. Residues believed to be part of the ion selectivity filter are highlighted in red rectangle boxes. Sequence alignment was performed using Clustal X version 2.0 (Larkin et al., 2007).

Figure S2. Radial intensity profiling of circular averaged pentameric particles in negatively stained EM images. (a) Radial averaging of pentameric particles. (b) Density line profile of the box region in (a). Peak to peak distance is ~45 Å. See also Figure 1.

Open-Channel Structures of the hGlyR-a1 TM Domain

Figure S3. The NOE connectivity and C α chemical shift index for the hGlyR- α 1 TM domain in LPPG micelles. The line thickness of the NOE connectivity is proportional to the cross-peak intensities. The helical regions observed in the NMR structure (black coils) are shown underneath the sequence for comparison. The filled circles below the sequence mark the residues where backbone hydrogen-bond restraints were imposed on the basis of the temperature dependence of the exchangeable amide protons. The two ends of a segment from TM2 to TM3 that is highly dynamic are marked with stars above the sequence. The artificial linker between TM3 and TM4 and the His-tag in the C-terminus are shown in gray color in the sequence. See also Table 1 and Figure 3.

Figure S4. Long-range distance restraints between different TM helices generated from NOESY experiments. (a) Representative strip plots of ¹³C and ¹⁵N filtered NOESY spectra showing NOE cross peaks resulting from residues in different TM helices. (b) The tertiary structures of the hGlyR- α 1 TMD showing all inter-helical NOEs (d_{ij}|i-j|>4) demonstrated in Figure S3. The colored dashed lines highlight NOEs corresponding to the colored cross peaks shown in (a). Total numbers of NOESY restraints are reported in Table 1. See also Figure 3.

Figure S5. Correlation between the distances measured by the paramagnetic relaxation enhancement (PRE) experiments and the distances calculated from the averaged NMR structure. Three sets of data are from paramagnetic spin labels at C290 (\circ), S296C/C290S (\Box), and S308C/C290S (\diamond). The solid line indicated the ideal case when experimental distance is identical to the calculated distance. The dashed lines mark the ±4 Å upper and lower bounds. The total number of PRE restraints is listed in Table 1. Calculated distances are based on the structures shown in Figure 3.

Figure S6. NMR dynamics measurements of the hGlyR- α 1 TM domain in LPPG micelles at 40°C and 16.5 T (700 MHz). Data for (a) R₁, (b) R₂, and (c) hetNOE plotted according to residue number. (d) Histogram of residue counts as a function of hetNOE values. A few residues had hetNOE value ≥ 1 due to either peak overlapping or low signal-to-noise ratio. Residues are classified into three categories: hetNOE ≥ 0.55 (pink), $0.45 \leq$ hetNOE < 0.55 (yellow), and hetNOE < 0.45 (cyan), corresponding to residues in helices, in regions transitioning from helices to loops, and in flexible loops or terminal regions, respectively. (e) The R₂/R₁ ratio of individual residues is plotted as a function of residue number. The corresponding hetNOE values are color-coded using the same categorical range as shown in (d). Notice the high flexibility near the end of the TM2 helix (S267, S268, G269, and S270) and the beginning of the TM3 domain (I285, W286, and L287). See also Figure 4.

Figure S7. Self-contact of the Q266's side chain amide with the backbone carbonyl oxygen. TM2 helices from the bundle of 15 pentamer structures of the hGlyR- α 1 TM domain are shown in cartoon representation. The side chain of Q266 is tangential to the pore. The side chain amide group (blue, labeled N ϵ) is only ~2Å away from the backbone carbonyl oxygen of Q266 (red, labeled O). Such a self-contact competes with the helical hydrogen bonding and potentially weakens the local helical structure.