## Elimination of climbing fiber instructive signals during motor learning

Michael C. Ke\*, Cong C. Guo\* & Jennifer L. Raymond

#### **Supplementary Figure 1**

b. a. Climbing fibers Simple spikes Ipsi NOS 2 NOS 2 Contra 50 SOH per Monkey L Monkey E 20/40 44/49 Lead Lag Lead Lag Contra Ipsi head head

#### C. Learning



**Neural responses and changes in VOR gain elicited by the x2T/x0BG training stimulus.** Climbing fiber responses (a), Purkinje cell simple spike responses (b), and behavioral changes (c) associated with the x2T/x0BG training stimulus. Neural responses significantly different from zero are indicated by black symbols, and the number of significant neurons out of the total recorded is noted on each polar plot.

In Monkey L (circles), the climbing fiber response to the  $\times 2T/\times 0BG$  stimulus was not statistically different from the response to the  $\times 0T/\times 2BG$  stimulus (P > 0.05, paired t-test; Table 1). Nevertheless,  $\times 2T/\times 0BG$  training induced a learned increase in VOR gain in Monkey L, in contrast to the decrease in VOR gain induced by  $\times 0T/\times 2BG$  training (Fig. 4b). Thus, stimuli that induced similar climbing fiber responses could induce opposite changes in VOR gain.

| x2T/x2BG                 | x0T/x0BG      | x0T/x2BG    |  |
|--------------------------|---------------|-------------|--|
| Head Ipsi Contra  10 °/s | Ipsi Contra   | Ipsi Contra |  |
| 1 s                      |               |             |  |
|                          |               |             |  |
|                          | and the first |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |
|                          |               |             |  |

#### Spike trains in individual climbing fibers during training.

Rasters showing the responses in 15 climbing fibers in Monkey L (a) and 24 climbing fibers in Monkey E (b) during 35-40 cycles of the x2T/x2BG, x0T/x0BG, and x0T/x2BG training stimuli, aligned on the onset of ipsiversive head movement. Each tick represents the occurrence of a spike in the climbing fiber, measured as a complex spike in its Purkinje cell target. All recordings were from horizontal gaze velocity Purkinje cells (HGVPs).

| x2T/x2BG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x0T/x0BG              | x0T/x2BG                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------|
| Head Ipsi Contra   10 °/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ipsi Contra           | Ipsi Contra                                             |
| 1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 13. · · · · · · · · · · · · · · · · · · ·               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
| an an the second se<br>Second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | a star franciska star star star star star star star sta |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |
| ng the the transmission of transmission of the |                       |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                         |

Nature Neuroscience: doi:10.1038/nn.2366



#### Average firing rate of climbing fibers did not vary across training stimuli.

Each set of connected points represents the average firing rate of a single climbing fiber during  $\times 2T/\times 2BG$ ,  $\times 0T/\times 0BG$ , and  $\times 0T/\times 2BG$  training stimuli, plus spontaneous activity. The training stimuli did not affect the average firing rate (P > 0.05, ANOVA).



#### Most of the learning occurs early in the training session.

Changes in VOR gain after 30 minutes of training in Monkey L, and 15 and 30 minutes in Monkey E. Each point represents the change in VOR gain at the indicated time points during a single replication of a behavioral training session. Solid bars represent the median change in VOR gain at the indicated time points, and dotted lines represent median changes in VOR gain during the entire training session (2 hrs for Monkey L and 1 hr for Monkey E; as shown in Figure 4). Most of the changes in VOR gain occurred early in the training session.



# Climbing fiber responses in non-HGVPs during $\times 0T/\times 0BG$ and $\times 0T/\times 2BG$ training. Polar plots showing the climbing fiber responses recorded in Purkinje cells that were sensitive to head and/or eye velocity, but did not fulfill the criteria for classification as an HGVP. Individual climbing fibers with a response significantly different from zero are shown in black. Neither $\times 0T/\times 0BG$ nor $\times 0T/\times 2BG$ training elicited a significant response in this population of climbing fibers (P > 0.05, one sample t-test).



Monkey L ● "gain decrease" signal Monkey E ♦ "gain increase" signal

Climbing fibers with "gain decrease" and "gain increase" responses during x0T/x2BG training had similar responses during standard training stimuli.

The climbing fiber responses to x0T/x0BG, x0T/x2BG and x2T/x2BG training stimuli are plotted, with positive values representing an increase in firing rate during ipsiversive head velocity, and negative values representing an increase in firing during contraversive head velocity. 39 of the 45 climbing fibers shown in **Fig. 2** were recorded for all three stimuli, and were included in this plot and the analysis in **Supplementary Table 1**. Each climbing fiber was categorized according to whether its response during x0T/x2BG training was in the "gain decrease" (grey) direction or "gain increase" (black) direction. An increase in firing during contraversive head velocity was categorized as "gain decrease", since this is what is observed during standard x0T/x0BG training, which decreases VOR gain. An increase in firing during ipsiversive head velocity was categorized as "gain increase", since this is what is observed during standard x2T/x2BG training, which increases VOR gain. Climbing fibers with "gain decrease" and "gain increase" responses during x0T/x2BG training had similar responses during the standard training stimuli.



### Climbing fiber and Purkinje cell simple spike responses to $\times 0.5T/\times 1BG$ , $\times 1.5T/\times 0.5BG$ and $\times 1T/\times 0BG$ training stimuli.

Polar plots showing the climbing fiber (a) and Purkinje cell simple spike responses (b) of individual neurons to the  $\times 0.5T/\times 1BG$  and  $\times 1.5T/\times 0.5BG$  training stimuli (Monkey E) and the  $\times 1T/\times 0BG$  training stimulus (Monkeys L and E, see Methods for detailed description of stimuli). Neural responses significantly different from zero are indicated in black symbols, and the number of significant neurons out of the total recorded is noted on each polar plot.

#### Supplementary Table 1

| Manhard                                                                                                                                                                                                                                                                  | "gain de                                                                                                                                                                 | crease" (8)                                                                                                                                                                                                            | "gain inc                                                                                                                                 | rease" (7)                                                                                                                                                                             | P-value                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Monkey L                                                                                                                                                                                                                                                                 | Mean                                                                                                                                                                     | SEM                                                                                                                                                                                                                    | Mean                                                                                                                                      | SEM                                                                                                                                                                                    |                                                                                                         |
| Climbing fiber respo                                                                                                                                                                                                                                                     | onse (spike                                                                                                                                                              | es per s)                                                                                                                                                                                                              |                                                                                                                                           |                                                                                                                                                                                        |                                                                                                         |
| x0T/x0BG                                                                                                                                                                                                                                                                 | -0.64                                                                                                                                                                    | 0.07                                                                                                                                                                                                                   | -0.77                                                                                                                                     | 0.06                                                                                                                                                                                   | 0.15                                                                                                    |
| x2T/x2BG                                                                                                                                                                                                                                                                 | 0.58                                                                                                                                                                     | 0.05                                                                                                                                                                                                                   | 0.76                                                                                                                                      | 0.10                                                                                                                                                                                   | 0.08                                                                                                    |
| x2T/x0BG                                                                                                                                                                                                                                                                 | 0.14                                                                                                                                                                     | 0.06                                                                                                                                                                                                                   | 0.10                                                                                                                                      | 0.09                                                                                                                                                                                   | 0.70                                                                                                    |
| x1T/x0BG                                                                                                                                                                                                                                                                 | -0.54                                                                                                                                                                    | 0.09                                                                                                                                                                                                                   | -0.50                                                                                                                                     | 0.11                                                                                                                                                                                   | 0.79                                                                                                    |
| Climbing fiber mean                                                                                                                                                                                                                                                      | n firing rate                                                                                                                                                            | e (spikes per s                                                                                                                                                                                                        | 3)                                                                                                                                        |                                                                                                                                                                                        |                                                                                                         |
| x0T/x0BG                                                                                                                                                                                                                                                                 | 0.86                                                                                                                                                                     | 0.10                                                                                                                                                                                                                   | 0.96                                                                                                                                      | 0.12                                                                                                                                                                                   | 0.51                                                                                                    |
| x2T/x2BG                                                                                                                                                                                                                                                                 | 0.92                                                                                                                                                                     | 0.10                                                                                                                                                                                                                   | 0.87                                                                                                                                      | 0.11                                                                                                                                                                                   | 0.76                                                                                                    |
| x0T/x2BG                                                                                                                                                                                                                                                                 | 0.82                                                                                                                                                                     | 0.07                                                                                                                                                                                                                   | 0.85                                                                                                                                      | 0.09                                                                                                                                                                                   | 0.80                                                                                                    |
| x2T/x0BG                                                                                                                                                                                                                                                                 | 0.90                                                                                                                                                                     | 0.10                                                                                                                                                                                                                   | 0.81                                                                                                                                      | 0.13                                                                                                                                                                                   | 0.55                                                                                                    |
| x1T/x0BG                                                                                                                                                                                                                                                                 | 0.76                                                                                                                                                                     | 0.06                                                                                                                                                                                                                   | 0.89                                                                                                                                      | 0.08                                                                                                                                                                                   | 0.20                                                                                                    |
| Purkinje cell simple                                                                                                                                                                                                                                                     | spike sens                                                                                                                                                               | sitivity (spikes                                                                                                                                                                                                       | s per s per                                                                                                                               | °/s)                                                                                                                                                                                   |                                                                                                         |
| Eye velocity                                                                                                                                                                                                                                                             | 1.30                                                                                                                                                                     | 0.18                                                                                                                                                                                                                   | 0.71                                                                                                                                      | 0.25                                                                                                                                                                                   | 0.05                                                                                                    |
| Head velocity                                                                                                                                                                                                                                                            | 0.97                                                                                                                                                                     | 0.16                                                                                                                                                                                                                   | 0.66                                                                                                                                      | 0.19                                                                                                                                                                                   | 0.19                                                                                                    |
| Cell location (cm)                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                        |                                                                                                         |
| A/P                                                                                                                                                                                                                                                                      | -0.25                                                                                                                                                                    | 0.43                                                                                                                                                                                                                   | -0.14                                                                                                                                     | 0.32                                                                                                                                                                                   | 0.84                                                                                                    |
| M/L                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                     | 0.46                                                                                                                                                                                                                   | -0.43                                                                                                                                     | 0.26                                                                                                                                                                                   | 0.35                                                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                                                                                        |                                                                                                         |
| Monkey E                                                                                                                                                                                                                                                                 | "gain deo<br>Mean                                                                                                                                                        | crease" (13)<br>SEM                                                                                                                                                                                                    | "gain inc<br>Mean                                                                                                                         | rease" (11)<br>SEM                                                                                                                                                                     | <i>P</i> -value                                                                                         |
| Monkey E                                                                                                                                                                                                                                                                 | "gain deo<br>Mean                                                                                                                                                        | crease" (13)<br>SEM                                                                                                                                                                                                    | "gain inc<br>Mean                                                                                                                         | rease" (11)<br>SEM                                                                                                                                                                     | <i>P</i> -value                                                                                         |
| Monkey E<br>Climbing fiber response                                                                                                                                                                                                                                      | "gain deo<br>Mean<br>onse (spike                                                                                                                                         | crease" (13)<br>SEM<br>es per s)<br>0.10                                                                                                                                                                               | "gain inc<br>Mean                                                                                                                         | rease" (11)<br>SEM                                                                                                                                                                     | P-value                                                                                                 |
| Monkey E<br>Climbing fiber response<br>x0T/x0BG<br>x2T/x2BG                                                                                                                                                                                                              | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76                                                                                                                        | erease" (13)<br>SEM<br><u>es per s)</u><br>0.10<br>0.08                                                                                                                                                                | "gain inc<br>Mean<br>-0.76<br>1.01                                                                                                        | rease" (11)<br>SEM<br>0.13<br>0.16                                                                                                                                                     | <i>P</i> -value                                                                                         |
| Monkey E<br>Climbing fiber response<br>x0T/x0BG<br>x2T/x2BG<br>x2T/x0BG                                                                                                                                                                                                  | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16                                                                                                                | erease" (13)<br>SEM<br>es per s)<br>0.10<br>0.08<br>0.10                                                                                                                                                               | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25                                                                                                | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08                                                                                                                                             | <i>P</i> -value                                                                                         |
| Monkey E<br>Climbing fiber respo<br>x0T/x0BG<br>x2T/x2BG<br>x2T/x0BG<br>x1T/x0BG                                                                                                                                                                                         | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53                                                                                                       | erease" (13)<br>SEM<br>0.10<br>0.08<br>0.10<br>0.09                                                                                                                                                                    | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57                                                                                       | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24                                                                                                                                     | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82                                                         |
| Monkey E<br><u>Climbing fiber respo</u><br>x0T/x0BG<br>x2T/x2BG<br>x2T/x0BG<br>x1T/x0BG<br>Climbing fiber mean                                                                                                                                                           | "gain deo<br><u>Mean</u><br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53                                                                                                | erease" (13)<br><u>SEM</u><br><u>es per s)</u><br>0.10<br>0.08<br>0.10<br>0.09<br>0.09                                                                                                                                 | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57                                                                                       | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24                                                                                                                                     | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82                                                         |
| Monkey E<br>Climbing fiber response<br>x0T/x0BG<br>x2T/x2BG<br>x2T/x0BG<br>x1T/x0BG<br>Climbing fiber mean                                                                                                                                                               | "gain deo<br>Mean<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate                                                                                                     | erease" (13)<br><u>SEM</u><br><u>es per s)</u><br>0.10<br>0.08<br>0.10<br>0.09<br><u>e (spikes per s</u> )<br>0.27                                                                                                     | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57                                                                                       | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24                                                                                                                                     | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82                                                         |
| Monkey E<br><u>Climbing fiber respo</u><br>×0T/x0BG<br>×2T/x2BG<br>×2T/x0BG<br>×1T/x0BG<br><u>Climbing fiber mean</u><br>×0T/x0BG                                                                                                                                        | "gain deo<br>Mean<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99                                                                                             | erease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>e (spikes per s<br>0.07<br>2.22                                                                                                                          | "gain inc<br><u>Mean</u><br>-0.76<br>1.01<br>0.25<br>-0.57<br>3)<br>1.06                                                                  | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06                                                                                                                             | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48                                                 |
| Monkey E<br>Climbing fiber response<br>×0T/x0BG<br>×2T/x2BG<br>×2T/x0BG<br>×1T/x0BG<br>Climbing fiber mean<br>×0T/x0BG<br>×2T/x2BG                                                                                                                                       | "gain deo<br><u>Mean</u><br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02                                                               | erease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>e (spikes per s)<br>0.07<br>0.06<br>2.20                                                                                                                 | "gain inc<br><u>Mean</u><br>-0.76<br>1.01<br>0.25<br>-0.57<br>5)<br>1.06<br>1.19                                                          | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.25                                                                                                             | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14                                         |
| Monkey E<br>Climbing fiber response<br>×0T/×0BG<br>×2T/×2BG<br>×2T/×0BG<br>×1T/×0BG<br>Climbing fiber mean<br>×0T/×0BG<br>×2T/×2BG<br>×0T/×2BG                                                                                                                           | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92                                                              | erease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>e (spikes per s)<br>0.07<br>0.06<br>0.06<br>0.06<br>0.06                                                                                                 | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>5)<br>1.06<br>1.19<br>0.94                                                         | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.23                                                                                                     | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76                                 |
| Monkey E<br>Climbing fiber response<br>×0T/×0BG<br>×2T/×2BG<br>×2T/×0BG<br>Climbing fiber mean<br>×0T/×0BG<br>×2T/×2BG<br>×2T/×2BG<br>×2T/×2BG<br>×2T/×2BG<br>×2T/×0BG                                                                                                   | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92<br>0.90                                                      | erease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>9 (spikes per s)<br>0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06                                                                                         | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>(5)<br>1.06<br>1.19<br>0.94<br>1.02                                                | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10                                                                                             | P-value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21                                 |
| Monkey E<br><u>Climbing fiber respo</u><br>×0T/×0BG<br>×2T/×2BG<br>×2T/×0BG<br>×1T/×0BG<br><u>Climbing fiber mean</u><br>×0T/×0BG<br>×2T/×2BG<br>×0T/×2BG<br>×2T/×0BG<br>×1T/×0BG                                                                                        | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92<br>0.90<br>0.85                                              | erease" (13)<br><u>SEM</u><br><u>as per s)</u><br>0.10<br>0.08<br>0.10<br>0.09<br>e (spikes per s)<br>0.07<br>0.06<br>0.06<br>0.06<br>0.06                                                                             | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>3)<br>1.06<br>1.19<br>0.94<br>1.02<br>1.01                                         | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10                                                                                             | P-value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21<br>0.12                         |
| Monkey E<br>Climbing fiber response<br>×0T/x0BG<br>×2T/x2BG<br>×2T/x0BG<br>×1T/x0BG<br>Climbing fiber mean<br>×0T/x0BG<br>×2T/x2BG<br>×0T/x2BG<br>×2T/x0BG<br>×2T/x0BG<br>Purkinje cell simple                                                                           | "gain deo<br>Mean<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92<br>0.90<br>0.85<br>spike sens                                               | erease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>0.09<br>0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06                                                                             | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>3)<br>1.06<br>1.19<br>0.94<br>1.02<br>1.01<br>s per s per                          | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10<br><sup>2</sup> /s)                                                                         | P-value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21<br>0.12                         |
| Monkey E<br>Climbing fiber response<br>×0T/x0BG<br>×2T/x2BG<br>×2T/x0BG<br>Climbing fiber mean<br>×0T/x0BG<br>Climbing fiber mean<br>×0T/x0BG<br>×2T/x2BG<br>×2T/x2BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG    | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92<br>0.92<br>0.90<br>0.85<br>spike sens<br>1.38                | crease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>(spikes per s)<br>0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.18                                   | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>3)<br>1.06<br>1.19<br>0.94<br>1.02<br>1.01<br>5 per s per<br>1.67                  | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10<br><sup>5</sup> /s)<br>0.39                                                                 | P-value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21<br>0.12<br>0.18                 |
| Monkey E<br>Climbing fiber response<br>×0T/×0BG<br>×2T/×2BG<br>×2T/×0BG<br>Climbing fiber mean<br>×0T/×0BG<br>×2T/×2BG<br>×0T/×2BG<br>×2T/×2BG<br>×2T/×2BG<br>×2T/×0BG<br>Purkinje cell simple<br>Eye velocity<br>Head velocity                                          | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.99<br>1.02<br>0.90<br>0.85<br>spike sens<br>1.38<br>1.09        | erease" (13)<br><u>SEM</u><br><u>as per s)</u><br>0.10<br>0.08<br>0.10<br>0.09<br><u>a (spikes per s)</u><br>0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.18<br>0.15      | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>5)<br>1.06<br>1.19<br>0.94<br>1.02<br>1.01<br>5 per s per<br>1.67<br>1.62          | rease" (11)<br><u>SEM</u><br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10<br><u>0.05</u><br>0.08<br>0.10<br><u>0.05</u><br>0.08<br>0.10<br><u>0.39</u><br>0.33 | P-value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21<br>0.12<br>0.18<br>0.49         |
| Monkey E<br>Climbing fiber response<br>×0T/×0BG<br>×2T/×2BG<br>×2T/×0BG<br>×1T/×0BG<br>Climbing fiber mean<br>×0T/×0BG<br>×2T/×2BG<br>×0T/×2BG<br>×2T/×2BG<br>×0T/×2BG<br>×2T/×0BG<br>Purkinje cell simple<br>Eye velocity<br>Head velocity<br>Cell location (cm)        | "gain deo<br>Mean<br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92<br>0.90<br>0.85<br>spike sens<br>1.38<br>1.09                | erease" (13)<br><u>SEM</u><br><u>as per s)</u><br>0.10<br>0.08<br>0.10<br>0.09<br><u>a (spikes per s)</u><br>0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.18<br>0.15                      | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>3)<br>1.06<br>1.19<br>0.94<br>1.02<br>1.01<br>5 per s per<br>1.67<br>1.62          | rease" (11)<br>SEM<br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10<br><sup>2/s)</sup><br>0.39<br>0.33                                                          | <i>P</i> -value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21<br>0.12<br>0.18<br>0.49 |
| Monkey E<br>Climbing fiber response<br>×0T/x0BG<br>×2T/x2BG<br>×2T/x0BG<br>×1T/x0BG<br>Climbing fiber mean<br>×0T/x0BG<br>×2T/x2BG<br>×2T/x2BG<br>×2T/x0BG<br>×2T/x0BG<br>×2T/x0BG<br>Purkinje cell simple<br>Eye velocity<br>Head velocity<br>Cell location (cm)<br>A/P | "gain deo<br><u>Mean</u><br>onse (spike<br>-0.82<br>0.76<br>0.16<br>-0.53<br>n firing rate<br>0.99<br>1.02<br>0.92<br>0.90<br>0.85<br>spike sens<br>1.38<br>1.09<br>0.24 | erease" (13)<br><u>SEM</u><br>0.10<br>0.08<br>0.10<br>0.09<br>e (spikes per s)<br>0.07<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.18<br>0.15<br>0.31 | "gain inc<br>Mean<br>-0.76<br>1.01<br>0.25<br>-0.57<br>3)<br>1.06<br>1.19<br>0.94<br>1.02<br>1.01<br>s per s per<br>1.67<br>1.62<br>-0.22 | rease" (11)<br><u>SEM</u><br>0.13<br>0.16<br>0.08<br>0.24<br>0.06<br>0.10<br>0.05<br>0.08<br>0.10<br><u>5/s)</u><br>0.39<br>0.30                                                       | P-value<br>0.69<br>0.14<br>0.47<br>0.82<br>0.48<br>0.14<br>0.76<br>0.21<br>0.12<br>0.18<br>0.49<br>0.27 |

**Climbing fibers carrying "gain decrease" versus "gain increase" climbing fiber signals during ×0T/×2BG training did not differ in any other property.** Climbing fibers carrying "gain decrease" versus "gain increase" signals during ×0T/×2BG training were categorized as described in **Supplementary Figure 6**. Responses of the two groups of climbing fibers to other training stimuli, and their average firing rate, sensitivity to eye and head velocity, and anatomical location were compared using t-tests. Sensitivity to eye velocity was measured during smooth pursuit eye movements; sensitivity to head velocity was measured during VOR cancellation (see Methods). Anterior-posterior (A-P) and medial-lateral (M-L) locations were measured relative to the mean of the full population of neurons recorded. No significant differences were found.