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Web Appendix A

In this web appendix, we present a sensitivity analysis of the hyper-parameters a and b of

λ = {λd; d ∈ D} and the hyper-parameters φk of β. There are two goals. One is to examine

the finite sample performance of STM and its associated parameter estimates under different

scenarios. The other is to evaluate MCMC convergence through a diagnostic analysis.

Sensitivity analysis for Λ. We consider three different scenarios for (a, b) including

(−2.0, 2.5), (−3.0, 3.0) and (−3.5, 3.5). In most applications, the three scenarios of (a, b)

represent a reasonable range of λ. Although it may be desirable to use a wider interval (a, b),

very flat priors can lead to slow convergence of the MCMC algorithm. We examine how STM

recovers the geometric patterns presented in Section 3. Web Figure 1 reveals that regardless

of the different choices of a and b, the STM is able to capture the true underlying pattern.

Thus, STM is robust to the choice of the hyperparameters of λd.

Geweke diagnostic statistics. Under each scenario, we evaluate convergence at each

voxel through the Geweke diagnosis statistics (Geweke, 1992). Web Table 1 presents the

percentages of voxels, whose Geweke diagnosis statistics, computed after 1000 iterations of

the Markov chain, are smaller than 1.96 (in absolute value). The numbers are shown to be

very similar across the three scenarios for all parameters. Compared with other parameters,

the β’s associated with the indicator variables β2(d) and β3(d) have a smaller proportion of

voxels that converge.

Trace plots for νk. We present the trace plots for the parameters νk associated with

each βk under the three scenarios in Web Figure 2. Web Figure 2 reveals that the MCMC

chains converge fast and the posterior estimates of νk converge to their true values.

Trace plots of β, τσ and λ. Web Figure 3 presents the trace plots of β, τσ and λ for

the scenario (a, b) = (−3.5, 3.5) in some selected voxels. For the sake of space, we omit their

trace plots for other scenarios and voxels, since they are essentially similar to each other.

Web Figure 3 reveals that the single-site Gibbs sampler algorithm has good convergence

properties.

Sensitivity analysis for φk. There are two strategies of determining φk. First, for small

and moderate ND, it is possible to integrate φk into the Gibbs sampler by sampling from
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Web Figure 1: Sensitivity analysis of Λ. Panels (a)-(d) represent the true pattern of β used
to generate the images; (e)-(h): the posterior means of β obtained with (a, b) = (−2.0, 2.5);
(i)-(l): the posterior means of β obtained with (a, b) = (−3.0, 3.0); and (m)-(p): the posterior
means of β with (a, b) = (−3.5, 3.5).

Web Table 1: Sensitivity analysis for λ indicating the percentages of voxels, whose Geweke di-
agnosis statistics are smaller than 1.96, according to the Geweke diagnosis statistics (Geweke,
1992) for each scenario considered.

Scenario (−2.0, 2.5) (−3.0, 3.0) (−3.5, 3.5)
λ 96.09 95.21 96.00
τ 94.53 94.63 93.65
β0 94.73 94.92 94.34
β1 93.55 94.63 94.92
β2 89.06 88.48 89.65
β3 89.06 88.28 89.94
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Web Figure 2: Trace plots of νk for k = 0, . . . , 3 after a burn-in of 50 iterations and a
total of 1000 MCMC iterations under the three scenarios of (a, b). Rows 1-3 correspond to
(a, b) = (−2.0, 2.5), (a, b) = (−3.0, 3.0), and (a, b) = (−3.5, 3.5), respectively.

the full conditional distribution of φk, which is proportional to p(βk|νk, φk)p(φk), where p(φk)

is the prior of φk. Different choices of φk have been discussed in Ferreira and De Oliveira

(2007). The conditional distribution for φk does not have a simple form, but it can be

easily sampled using the slice sampler (Neal, 2003). Sampling φk requires the computation of

the eigenvalues of a sparse ND ×ND matrix Hk. For an extremely large ND, calculating the

eigenvalues of Hk can be computationally infeasible. Second, it is common to pre-specify φk in

many applications. Thus, it is important to evaluate the effects of different hyperparameters

φk on parameter estimates.

Inspecting Web Figure 4 reveals that as φ0 increases, the posterior estimates of β0 get

worse, whereas there is no visual difference for other parameter estimates under different

φk. It is expected that the estimation of the model parameters becomes more and more

difficult when φk is large, since the effective sample size decreases as the correlation among

observations increases. It results in a decrease of useful information about the parameters of

interest, which is contained in the data (Ferreira and De Oliveira, 2007).
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Web Figure 3: Trace plots of β, τσ and λ for the scenario (a, b) = (−3.5, 3.5) at 4 random
selected voxels. The results show fast convergence of the MCMC chain for all parameters.
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Web Figure 4: Posterior estimates of β for different values of φk: (a)-(d): φk = 0.01; (e)-(h)
φk = 0.1; (i)-(l) φk = 1; and (m)-(p): φk = 100.
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Web Appendix B

The goal in this subsection is to examine the effects of different Hk on the parameter estimates

of β. Recall that Hk is given by

hk(d, d
′) =

{ ∑
d′∈N(d) ωk(d, d

′)2, for d = d′,

−ωk(d, d′)21(d′ ∈ N(d)), for d 6= d′.

Throughout the paper we consider ωk(d, d
′) = K(||d−d′||2), where K(u) = exp

(
−1

2
u2
)
1(u ≤

2). The following possibilities are considered here:

(H.1) A constant kernel K(u) = 1(u ≤ 2), meaning all neighbors of the voxel d are

given the same weights, ωk(d, d
′) = 1(||d− d′||2 ≤ 2);

(H.2) The Gaussian kernel K(u) = exp
(
−1

2
u2
)
1(u ≤ r0), for r0 = 0, 4, 6.

Other hyperparameters were chosen as described in Section 3 of the paper. As shown in Web

Figure 5, the corresponding estimates of the intercept in all cases are quite poor, whereas the

estimates for the remaining parameters are quite accurate for all cases considered.

6



Web Figure 5: Posterior estimates of β under different specifications of Hk. Panels (a)-(d):
case (H.1); (e)-(p): case (H.2) for r0 = 0, 4, 6.
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Web Appendix C

Our goal is to examine the parameter estimates obtained from STM, when the true model

corresponds to λd = 1 for all d ∈ D. Web Figure 6 shows that the STM can reliably recover

the true pattern in the β images. Web Figure 7 reveals that the estimated λd’s are close to

the true value 1.

Web Figure 6: The posterior estimates of β for the true model with λd = 1 for all d ∈ D.

Web Figure 7: The posterior estimated image Λ̂ = {λ̂d : d ∈ D} for the true underlying
model with λd = 1 for all d ∈ D.
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Web Appendix D

In this subsection we present the estimated β̂k images for the intercept, gender, age, and

ADHD status. Web Figures 8, 9, 10 and 11, respectively, show the results. The maps include

the posterior mean, the standard deviation and the standardized images given by β̂k/ŝtd(β̂k).

Web Figure 8: The posterior mean, the posterior standard deviation (SD), and the standard-
ized value (mean/SD) images corresponding to the intercept β0 are shown from the left to
the right, respectively.

Web Figure 9: The posterior mean, the posterior standard deviation (SD), and the standard-
ized value (mean/SD) images corresponding to the gender β1 are shown from the left to the
right, respectively.
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Web Figure 10: The posterior mean, the posterior standard deviation (SD), and the stan-
dardized value (mean/SD) images corresponding to the age β2 are shown from the left to the
right, respectively.

Web Figure 11: The posterior mean, the posterior standard deviation (SD), and the stan-
dardized value (mean/SD) images for the ADHD status β3 are shown from the left to the
right, respectively.
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