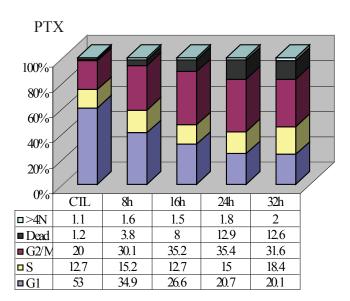
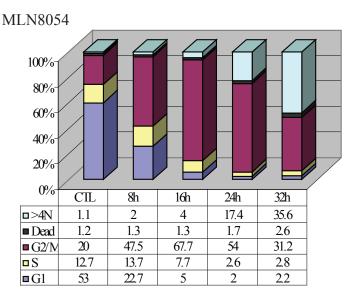
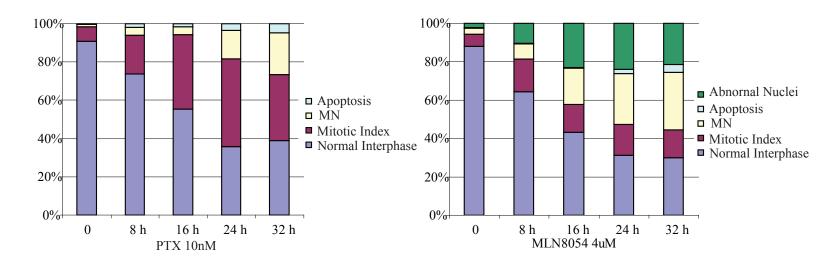


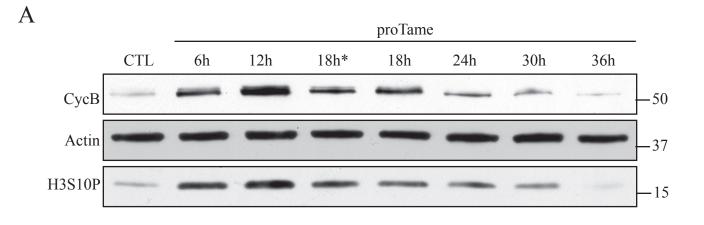
Supplemental Material to:

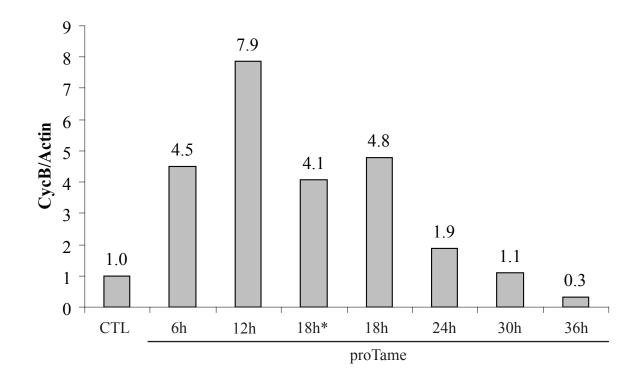

Serena Giovinazzi, Dhruv Bellapu, Viacheslav M Morozov, and Alexander M Ishov

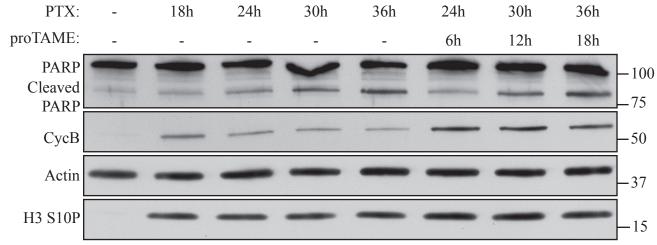

Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy

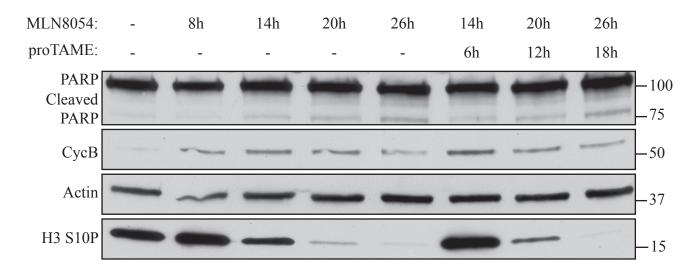
Cell Cycle 2013; 12(16) http://dx.doi.org/10.4161/cc.25591


http://www.landesbioscience.com/journals/cc/article/25591

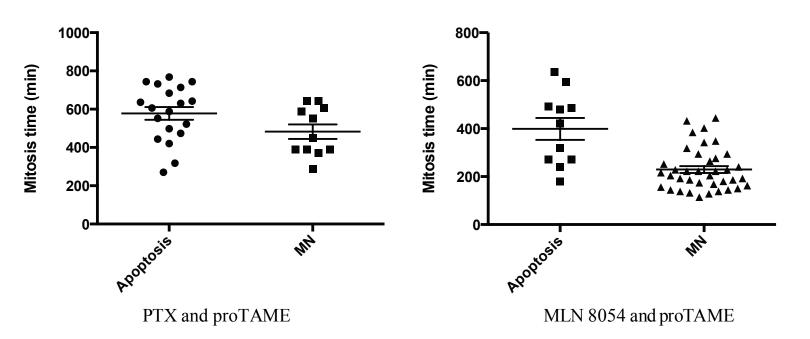


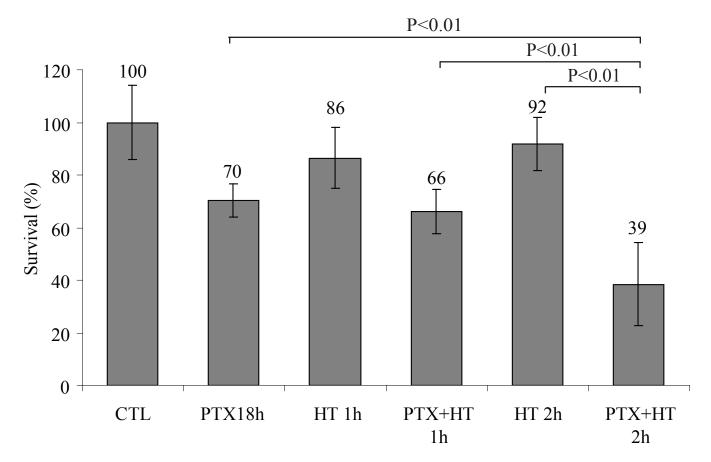



В

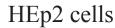


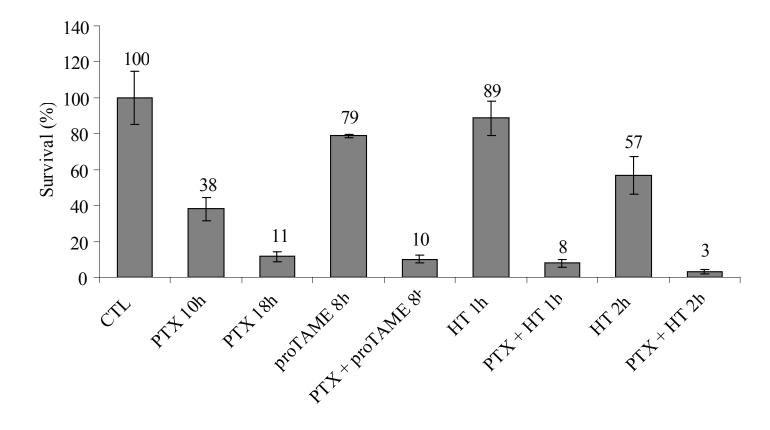
В




В

С




T47D cells

В

A

Giovinazzi et al. Fig. S4

Supplementary Figures Description

Figure S1. Analysis of cell treated with anti-mitotic drugs. (A) Cell cycle analysis of HEp2 cells treated for the indicated times with 10 nM PTX or 4μ M MLN8054. DNA content was evaluated to assess cell cycle stages, vitality and polyploidy. (B) The same conditions of treatment were adopted to evaluate in HEp2 cells mitotic index, apoptosis, micronuclei (MN) formation and, for MLN8054, the presence of abnormally shaped nuclei (enlarged, doughnut shaped or with protrusions). Microscopy analysis based on DNA morphology; for each experiment at least 100 cells were counted (SD±5). PTX maintains consistently mitotic arrest in cells and starts to accumulate MN after 24 hours of treatment. On the opposite, the Aurora A inhibitor MLN8054, as previously reported ⁵⁵, blocked only transiently cells in mitosis, as indicated by lower mitotic index, and caused accumulation of cells in G2 and cells with \geq 4N DNA content.

Figure S2. proTame transiently blocks cells in mitosis. (A) proTAME was added to HEp2 cells at 12 μ M for the indicated time. proTAME causes maximal accumulation of cells in mitosis at 12 hours as demonstrated by cyclin B and H3 Ser10P western blots. (B) cyclin B levels were normalized towards the internal control Actin and protein levels in the control sample. The 18 hours timepoint: cells exposed to proTAME for the first 18 hours of treatment, while the 18* represents an internal control where proTAME was added to cells for the last 18 hours of treatment.

Figure S3. proTAME delays mitotic exit of cells treated with anti-mitotic drugs. Western Blots to evaluate cyclin B stability in HEp2 cells treated with 10 nM PTX (A) or 4 μ M MLN8054 (B) with or without the addition of proTAME during the last 6, 12 or 18 hours of treatment. H3 Ser10P was used as positive control of accumulation of cells in mitosis and for MNL8054 activity and PARP to monitor induction of apoptosis. (C) Scatter plots representing mitotic timing of cells that commit either apoptosis or micronucleation (MN) monitored by time-lapse microscopy. 12 μ M proTAME was added after a 12 hours pre-treatment with PTX (left, ± SEM) or for 8 hours with MLN8054 (right, pValue<0.001, ± SEM).

Figure S4. HT-induced mitotic exit kills efficiently cancer cells. (A) Survival assay of T47D cells (a cell line resistant to PTX, ⁴²) treated with 10 nM PTX for a total time of 18 hours with or without HT for 1 or 2 hours (SD±3). (B) Survival assay of HEp2 cells comparing the response of cells arrested in mitosis first by PTX and then treated with HT to trigger mitotic exit or with proTAME to prolong mitotic block. Cells were treated with PTX for a total time of 10 or 18 hours. HT was applied for the last 1 or 2 hours of PTX treatment. proTAME was added for the last 8 hours of PTX exposure (SD±3).

Table S1. proTAME prolongs mitotic arrest and can cause apoptosis. Table listing the mitotic timings of GFP-H2B HEp2 cells untreated, treated with PTX and MLN8054, with or without proTAME. Beside the time measurement for each event, the post-mitotic outcome is also reported. At the bottom of each column, the average mitotic timing, standard deviation and percentage of apoptotic cells (% of A) are shown.

Legend: D = normal division

A = apoptosis

A = apoptosis	
MC = mitotic catastrophe	

1	Control			РТХ		•	PTX+proT/	ME		MLN8054	4		MLN8054+pro	TAME
	Mitotic time (min)	Cell Fate		Mitotic time (min)	Cell Fate		Mitotic time (min)	Cell Fate		Mitotic time (min)	Cell Fate		Mitotic time (min)	Cell Fate
	60	D	•	222	MC		744	A		576	MC		264	MC
	40	D		246	MC		744	A		144	MC		276	MC
	54	D		198	D		732	A		102	MC		128	MC
	56	D		510	MC		474	A		210	MC		204	MC
	50	D		480	MC		606	A		132	MC		186	MC
	50	D		342	MC		444	A		102	MC		240	Α
	54	D		174	MC		552	MC		222	MC		270	Α
	72	D		192	MC		588	A		72	MC		240	MC
	80	D		126	MC		420	A		144	MC		222	MC
	48	D		252	MC		588	MC		174	MC		186	MC
	52	D		300	MC		768	A		204	MC		114	MC
	70	D		306	MC		606	MC		180	MC		348	MC
	56	D		588	MC		390	MC		348	MC		162	MC
	72	D		630	MC		270	A		94	MC		144	MC
	54	D		444	A		684	A		144	MC		222	MC
	46	D		426	MC		318	A		414	MC		138	MC
	60	D		606	MC		288	MC		126	MC		270	A
	66	D		234	MC		642	MC		114	MC		138	MC
	54	D		456	MC		642	MC		216	MC		636	Α
	52	D		516	MC		552	A		132	MC		372	MC
	50	D		318	MC		390	MC		204	MC		342	MC
	60	D		624	MC		630	A		306	MC		420	A
	48	D		624	MC		390	MC		408	MC		486	A
	40	D		488	A		714	A		246	MC		144	MC
	70	D		312 486	MC MC		642	A MC		120	MC MC		294 216	MC MC
	68 56	D		114	MC		450 372	MC		120 234	MC		252	MC
	54	D		348	MC		636			234 228	MC		202	MC
	44	D		306	MC		498	AA		330	MC		402	MC
	70	D		474	MC		522	Â		300	MC		492	A
	42	D	Austan	378.1	MIC	Average	543.2	^		354	MC		480	
	50	Ď	Average St Dev	157.6		St Dev	144.4			138	MC		384	A MC
	54	Ď	arbev	107.0		arbev	144.4			174	MC		180	A
	56	Ď								138	MC		444	MC
	52	Ď	% of A	6.7		% of A	63.3			270	MC		174	MC
	62	Ď								262	MC		594	A
	70	Ď								294	MC		432	MC
	56	D								228	MC		318	A
	72	D								90	MC		222	MC
	50	D								120	MC		318	MC
	52	D								210	MC		228	MC
	46	D								336	MC		132	MC
	62	D								156	MC		180	MC
	58 62	D								474	MC		192	MC
	62	D								210	MC		156	MC
	56	D								120	MC		150	MC
	44	D								234	MC		204	MC
	50	D								186	MC		192	MC
	58	D								318	MC		168	MC
	46	D								138	MC		228	MC
Average	56.1								Average	215.9		Average	269.6	
St Dev	9.4								St Dev	107.4		St Dev	107.4	
% of A	0								% of A	0		% of A	22.0	