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A. DYNAMICS OF METACOMMUNITIES WHEN DISPERSAL TENDS TO INFINITY 

We consider a predator-prey metacommunity occupying M patches where prey growth 

follows a logistic shape, with any prey-dependent functional response f and predator mortality 

g. Dispersal depends on density in the departure patch.  
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Our aim is to investigate the properties of the solutions when dN and dP →+∞. In order to 

facilitate the analysis, we assume dN = dP =d. For any d, we denote (Ni
d , Pi

d ) the associated 

solution of (A.1).  

 

First, the equation A.1 of the prey for each patch i is equivalent to: 
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When d→+∞, the left-hand side of (A.2) tends to 0 and thus Ni
d → Ni

∞, with 

Ni
∞ = 1

M −1
N j

∞
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∑ . This implies that Ni
∞ is independent of i. The same conclusion is obtained 

for the equation of the predator. This means that the prey and the predator have the same 

densities in all patches when dispersal is global and infinite. Set N∞ and P∞ these densities. 
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Second, we want to find the equations describing the densities (N∞, P∞) in the 

metacommunity when dispersal tends to infinity. Notice that Ni
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∑ . Thus, taking the sums of equations (A.1) over i leads to: 
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When d→+∞, Ni
d 
→ N∞ and Pi

d 
→ P∞, and the system of equation (A.3) tends to: 
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1
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is the harmonic mean of the carrying capacities Ki in the different 

patches i. 

Third, we conclude on the stability of the equilibrium for our specific model. If the functional 

response is of type II (Holling 1959), f (N∞) =
aN∞

1+ athN
∞ , and if g is a constant g(P∞) = m, we 

obtained the Rosenzweig-MacArthur model. This model has one equilibrium where the prey 

and the predator can coexist. At this equilibrium, predator density is positive when 

K >
m

a e− mth( ) . By studying the sign of the determinant and of the trace of the Jacobian 

matrice of (A.4), it is easy to show that this equilibrium is stable when K < K thr  with 

K thr =
e+ mth

ath(e− mth)
. 
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B. EFFECTS OF REGIONAL ENRICHMENT ON METACOMMUNITIES 

B.1 Stability thresholds 

We consider a predator-prey metacommunity occupying M patches where the carrying 

capacity in all the patches is assumed to be K0, which is below the destabilizing threshold of 

an isolated patch Kthr. We consider that this metacommunity experiences regional enrichment 

E and we studied the critical value of regional enrichment, Ethr , leading to the destabilization 

of metacommunity equilibrium in the limiting cases where there is no dispersal and where 

dispersal tends to infinity. 

 

(a) No dispersal 

As we consider that dispersal from patch to patch is equal to zero, the metacommunity 

equilibrium is stable if the equilibriums of each of the M isolated communities are stable. 

Isolated communities have one equilibrium where the prey and the predator can coexist with 

positive densities if Ki > m (a(e− mth)) . This equilibrium is stable if and only if the carrying 

capacity Ki in this patch is lower than Kthr = (e+ mth) (ath(e− mth)) . If the carrying capacity 

of at least one community crosses the threshold Kthr , then metacommunity equilibrium is 

unstable. 

 

When enrichment distribution is homogeneous (α=0), the carrying capacity in each patch is 

equal to K0+E/M. Thus, the equilibrium of the metacommunity is destabilized when the 

regional enrichment E exceeds the critical value Ethr
0 (α = 0)= (Kthr − K0)M . 
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When the spatial heterogeneity in enrichment distribution is maximal (α=1), the regional 

enrichment E is concentrated in only one patch. When enrichment leads the carrying capacity 

in this patch to be higher than Kthr , the equilibrium of the metacommunity is destabilized. 

Thus, the equilibrium of the metacommunity is destabilized when enrichment is higher than 

the critical value Ethr
0 (α =1)= (Kthr − K0) . 

 

(b) Infinite dispersal 

We consider that dispersal from patch to patch tends to +∞. The dynamics of this 

homogenized metacommunity are described by the equations (A.4). 

 

When enrichment distribution is homogeneous (α=0), the carrying capacity in each patch is 

increased by the same amount E/M. Hence the carrying capacity is the same in all patches and 

is equal to K0+E/M. As a consequence, the regional carrying capacity of the prey simplify as: 

K = Ki = K0 + E / M . Thus, the equilibrium of the metacommunity is destabilized when 

enrichment is higher than the critical value Ethr
∞ (α = 0)= (Kthr − K0)M . 

 

When the heterogeneity of enrichment distribution is maximal (α=1), only one patch receives 

enrichment and its carrying capacity is increased to K0+E whereas the carrying capacity in the 

other patches is equal to K0, Hence, the regional carrying capacity of the prey is: 
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If the regional enrichment E tends to +∞ in (B.1), then K  tends to a maximal value K max: 

K E→∞ → M
M −1

K0 = K max 
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Recall that the equilibrium of the homogenized metacommunity is stable if K < K thr  where 

Kthr depends only on predator parameters. Hence, there are two cases: 

• In the first case, where K0 × M (M −1) < Kthr , the regional enrichment E does never 

destabilize the equilibrium of the homogenized metacommunity, even the regional 

enrichment reaches infinite values. 

In the second case, where K0 × M (M −1) > Kthr , the regional enrichment E destabilizes 

the equilibrium of the homogenized metacommunity when it is above the threshold given 

by: 

Ethr
∞ (α =1)= M
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− M −1

K0
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. 

We found that
∂Ethr

∞ (α =1)

∂M
> 0 if Kthr > K0, 

∂Ethr
∞ (α =1)

∂K0

< 0 and 
∂Ethr

∞ (α =1)

∂Kthr

> 0. 

 

B.2 Comparison of stability thresholds 

Now, we want to compare these four thresholds in order to study the effect of enrichment 

distribution and of dispersal on the stability of metacommunity equilibrium. 

 

(a) Effect of enrichment distribution when dispersal is null: Ethr
0 (α = 0) versus Ethr

0 (α =1). 

We have Ethr
0 (α = 0)= (Kthr − K0)M > (Kthr − K0) = Ethr

0 (α =1). Thus, when dispersal is null, 

the equilibrium of the metacommunity is destabilized at higher level of regional enrichment 

when the distribution of enrichment is homogeneous (α=0) than when it is heterogeneous 

(α=1). 
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(b) Effect of enrichment distribution when dispersal tends to infinity: Ethr
∞ (α = 0) versus 

Ethr
∞ (α =1). 

Because we assume that before enrichment the carrying capacities in all patches are below the 

destabilization threshold of an isolated patch (K0 < Kthr ), we can compute: 

Ethr
∞ (α =1)= K0 × M (Kthr − K0)

M K0 − (M −1)Kthr

> K0 × M (Kthr − K0)

M K0 − (M −1)K0

= M (Kthr − K0) = Ethr
∞ (α = 0) 

Thus, when dispersal is infinite, the equilibrium of the homogenized metacommunity is 

destabilized for lower levels of regional enrichment when enrichment distribution is 

homogeneous than when the heterogeneity of enrichment distribution is maximal. 

 

(c) Effect of dispersal when α=0: Ethr
0 (α = 0) versus Ethr

∞ (α = 0). 

We have Ethr
0 (α = 0)= (Kthr − K0)M = Ethr

∞ (α = 0). Thus, when enrichment distribution is 

homogeneous, the equilibrium of the metacommunity is destabilized for the same level of 

regional enrichment when dispersal is null and when dispersal is infinite. 

 

(d) Effect of dispersal when α=1: Ethr
0 (α =1) versus Ethr

∞ (α =1). 

Because we assume thrKK <0 , we can compute: 
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Thus, if the heterogeneity of enrichment distribution is maximal, the destabilization of the 

metacommunity equilibrium occurs for lower levels of regional enrichment when dispersal is 

null than when dispersal tends to infinity. 


