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A.DYNAMICSOF METACOMMUNITIESWHEN DISPERSAL TENDSTO INFINITY

We consider a predator-prey metacommunity occupyimgatches where prey growth
follows a logistic shape, with any prey-dependamnictional responsieand predator mortality

g. Dispersal depends on density in the departure patch.
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Our aim is to investigate the properties of theisohs wherdy anddps —+c. In order to
facilitate the analysis, we assumhe= dp =d. For anyd, we denoteN; , P ) the associated

solution of (A.1).

First, the equation A.1 of the prey for each patishequivalent to:
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Whend—+w, the left-hand side of (A.2) tends to 0 and thifs— N, with

M
N~ :ilz N;”. This implies thal;” is independent df The same conclusion is obtained
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for the equation of the predator. This means tmafptrey and the predator have the same

densities in all patches when dispersal is globdliafinite. SetN” andP” these densities.



Second, we want to find the equations describiegiimsitiesN™, P*) in the
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metacommunity when dispersal tends to infinity. ibethat > N/ :izz N and
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Whend—+wn, N > N”andP,?— P”, and the system of equation (A.3) tends to:

dN®
dt

dpt — ef (N*)P" — g(P")P°

N®
:rN‘{l—TJ— f(N®)P™
K (A.4)

—_— M _l
whereK =M [Z%J is the harmonic mean of the carrying capackies the different

i=1
patches.

Third, we conclude on the stability of the equiliton for our specific model. If the functional
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response is of type Il (Holling 19595§,(N*) = —, and ifg is a constang(P*) =m, we

1+at,N
obtained the Rosenzweig-MacArthur model. This md@esl one equilibrium where the prey

and the predator can coexist. At this equilibrigpngdator density is positive when

K >ﬁ. By studying the sign of the determinant and eftilace of the Jacobian
h

matrice of (A.4), it is easy to show that this dipaium is stable wherK <K, with
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B. EFFECTSOF REGIONAL ENRICHMENT ON METACOMMUNITIES

B.1 Stability thresholds

We consider a predator-prey metacommunity occupyirgatches where the carrying
capacity in all the patches is assumed t&geavhich is below the destabilizing threshold of

an isolated patcKy,. We consider that this metacommunity experienegs®nal enrichment
E and we studied the critical value of regional emment,E, , leading to the destabilization

of metacommunity equilibrium in the limiting casekere there is no dispersal and where

dispersal tends to infinity.

(a) No dispersal
As we consider that dispersal from patch to pagaqual to zero, the metacommunity
equilibrium is stable if the equilibriums of eachtlee M isolated communities are stable.
Isolated communities have one equilibrium wherepitey and the predator can coexist with
positive densities i, >m/(a(e-mt,)). This equilibrium is stable if and only if the cging
capacityK; in this patch is lower thaK,, =(e+nt,)/(at,(e—nt,)). If the carrying capacity
of at least one community crosses the thresligld then metacommunity equilibrium is

unstable.

When enrichment distribution is homogeneaws0), the carrying capacity in each patch is

equal toKo+E/M. Thus, the equilibrium of the metacommunity istdbgized when the

regional enrichmerf exceeds the critical valug;, (a =0)=(K,, —K,)M.



When the spatial heterogeneity in enrichment distion is maximald¢=1), the regional
enrichmen€ is concentrated in only one patch. When enrichrieads the carrying capacity

in this patch to be higher thdf,, , the equilibrium of the metacommunity is destaleit.
Thus, the equilibrium of the metacommunity is de#itged when enrichment is higher than

the critical valueEy (a=1)=(K,, —K,).

(b) Infinite dispersal
We consider that dispersal from patch to patchgéade. The dynamics of this

homogenized metacommunity are described by thetiegsgA.4).

When enrichment distribution is homogeneaws0), the carrying capacity in each patch is
increased by the same amo&/¥1. Hence the carrying capacity is the same in dtihss and

is equal taKp+E/M. As a consequence, the regional carrying capatitye prey simplify as:

K=K, =K,+E/M. Thus, the equilibrium of the metacommunity istebasized when

enrichment is higher than the critical valkg (a =0)= (K, —K,)M.

When the heterogeneity of enrichment distribut®meaximal ¢=1), only one patch receives
enrichment and its carrying capacity is increaseh,tE whereas the carrying capacity in the
other patches is equal K, Hence, the regional carrying capacity of the psey
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If the regional enrichmeri tends to 4o in (B.1), thenK tends to a maximal valuk max:

RDFD«D-»lKOZRmax
M-1



Recall that the equilibrium of the homogenized roetamunity is stable iK <K, where

Kinr depends only on predator parameters. Hence, énergvo cases:

* Inthe first case, wher,xM /(M -1) <K, , the regional enrichmeft does never
destabilize the equilibrium of the homogenized ro@tamunity, even the regional
enrichment reaches infinite values.

In the second case, whekg x M /(M -1) >K,, , the regional enrichme#t destabilizes

the equilibrium of the homogenized metacommunitgmwit is above the threshold given

by:
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B.2 Comparison of stability thresholds

Now, we want to compare these four thresholds deioto study the effect of enrichment

distribution and of dispersal on the stability odtacommunity equilibrium.

(a) Effect of enrichment distribution when dispersal isnull: E; (a =0) versus E (a =1).
We haveE, (a=0)=(K,, ~K, )M > (K, —K,)=E; (a=1). Thus, when dispersal is null,
the equilibrium of the metacommunity is destabdize higher level of regional enrichment

when the distribution of enrichment is homogengoef) than when it is heterogeneous

(0=1).



(b) Effect of enrichment distribution when dispersal tends to infinity: E; (a =0) versus

Ey (a=1).
Because we assume that before enrichment the m@regipacities in all patches are below the

destabilization threshold of an isolated patih € K, ), we can compute:
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Thus, when dispersal is infinite, the equilibriufittte homogenized metacommunity is
destabilized for lower levels of regional enrichr@hen enrichment distribution is

homogeneous than when the heterogeneity of enrichdigtribution is maximal.

(c) Effect of dispersal when a=0: E, (a =0) versusEy, (a =0).
We haveE,, (a=0)=(K,, —K,)M =E;, (a=0). Thus, when enrichment distribution is

homogeneous, the equilibrium of the metacommusityeistabilized for the same level of

regional enrichment when dispersal is null and wdispersal is infinite.

(d) Effect of dispersal when a=1: E; (a=1) versusE;, (a =1).

Because we assum€, <K, , we can compute:
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Thus, if the heterogeneity of enrichment distribntis maximal, the destabilization of the
metacommunity equilibrium occurs for lower levefgegional enrichment when dispersal is

null than when dispersal tends to infinity.



