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1. ADDITIONAL EXPERIMENTAL DATA RESULTS

In the main text, various estimation strategies were used to extract the diffusive and localization noise of ex-
perimental trajectories. In this section, we provide additional results to illustrate various technical points (the
subsection titles highlight the themes studied). This section focuses exclusively on analyzing experimental data
(Sec. 3 provides additional control simulation results).
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1.1 Directed Motion Results

The results in Figs. S1 and S2 are representative of ARG3 mRNA trajectories where the number of rejections
implied by the goodness-of-fit tests used to check the consistency of the assumed classic SPT models with
experimental data was unusually large (implying rejection or inconsistency of experimental data with fitted
models) along a single trajectory (see main text).
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Fig. S 1. An ARG3 trajectory exhibiting statistically significant 3D forces. The raw measurements obtained from the
microscope are show as a solid curve. The rich geometrical structure in raw data was only noticed after the goodness-of-fit
tests flagged this trajectory as not being consistent with classic SPT models. The 3D forces at different times are denoted
by colored arrows (color and length scaling dictated by the inferred magnitude). This trajectory also exhibited “tethering”
forces for a transient time. The inset plots the difference between the AIC and BIC score obtained for a 3D and 1D model
(values below zero suggest that the added complexity associated with estimating a 3D model is justified given the data
in a local time window).

1.2 Confined Diffusion Results

As stated in the Methods of the main text, 290/1419 of the trajectories were rejected by the M-test. However, it
should be noted that the goodness-of-fit tests used can also be used in different contexts (note that the goodness-
of-fit testing techniques employed are discussed in greater detail in SI Sections 2.3-2.5). Figure 3 presents a
situation where the tracked mRNA was in the bud of a yeast cell. In this small and highly crowded region of the
cell, a researcher may be tempted to claim that the diffusion is “anomalous”. The M-test applied to a sequence
of three 1D SDE models (the x, y, z components were assume to evolve independently) suggests that there is
not enough evidence in the data to reject to simple 1D SDEs. So despite the apparent confined nature, an SDE
accounting for 2D or 3D constraint forces is not required to produce a model not rejected by goodness-of-fit
testing.
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Fig. S 2. Another ARG3 trajectory exhibiting transient (but statistically significant) 3D forces. See previous caption
for details for additional details.

1.3 Statistically Quantifying Problems with Using Fixed Motion Parameters

Table S1 displays some dangers of not accounting for time-varying parameters in classic SPT analysis methods.
If MSD-based1 and MLE techniques (aiming to achieve optimal estimation2) are applied, one can certainly
extract some estimate of the diffusion coefficient and measurement noise. The problem is that the statistics of
the increments can change over time, so these estimates are of dubious quality. MSD methods are only concerned
with the time between observations (so increments observed at vastly different times can get aggregated together
in the MSD curve). To apply the hypothesis testing procedure used here,3 we plugged the parameter estimates
obtained from each scheme into the analytically known likelihood used in Ref.2 to evaluate the corresponding
Q-test statistics. This procedure strongly suggested rejection of a model assuming constant (i.e., “time-frozen”)
parameters; the p− values associated with the test statistics presented are all < 10−6.

Table S 1. Diffusion Coefficient and Measurement Noise Estimates (MSD vs. MLE) along with goodness-of-fit for the
x,y, and z components of the mRNA trajectory shown in Fig. 1 of the main text. For the MSD analysis, the procedure
outlined in Ref.1 was used. The code associated with Ref.2 was used to provide the MLE estimates (note: the “motion
blur coefficient” was set to zero in the results reported; since this parameter is not statistically identifiable from observed
time series data alone ). Goodness of fit reported utilizes the exact likelihood and the Q test-statistic3 (e.g., Qx denotes
goodness-of-fit result for x).

Estimator Dx[µm2/s] Rx[nm] Qx Dy[µm2/s] Ry[nm] Qy Dz[µm2/s] Rz[nm] Qz

MSD 0.015 23.319 135.092 0.009 20.737 104.895 0.003 17.516 31.168

MLE 0.015 12.467 6.044 0.014 11.318 9.118 0.006 13.710 9.398
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Fig. S 3. Goodness of fit test to a spatially confined mRNA. Top left: white light image of yeast cell (tagged mRNA
circled). Top right: M(1,1) test statistic computed over 9 time windows. For this trajectory, three 1D SDE models (i.e.
each window of the 3D measurement was used to generate 3 1D SDEs) performed reasonably in terms of the goodness-of-
fit tests used (blue denotes x results, red denotes y, and black denotes z). Bottom: The 3D measurements with inferred
force vectors superimposed.

1.4 Heterogeneity and Time Changing Effective Kinetic Parameters

1.4.1 Heterogeneity in the Effective Measurement Noise

Figure S4 displays the estimated effective measurement noise associated with z (i.e.,R
1
2
z ) vs. time for seven

different trajectories. Note how both the general shape (not just slope and intercept) vary between different
trajectories. The non-trivial trend in effective measurement noise is due in part to trajectory specific background
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Fig. S 4. The estimated measurement uncertainty in z vs. time for seven different trajectories. The lengths of the
trajectories differ due to the different stochastic photobleaching times associated with each measurement. An estimate of
the parameter uncertainty is shown as a vertical bar.

fluorescence, differing numbers of active emitters, and other phenomena known to complicate photon counting.1,4

Although accurately quantifying effective measurement noise may not be of primary interest in SPT studies, it is
required for calibrating statistically acceptable models (using the average measurement does not suffice as shown
next in experimental results in Table S1 and by simulation results shown in SI Section 3).

1.4.2 Time Changing Kinetic Parameters

In the results reported in Table S1 (discussed in Sec. 1.3), the parameters were assumed frozen for the entire
duration of the trajectory. Here we demonstrate that dividing the trajectory into multiple segments, each segment
contained 400 observations (the entire trajectory had over 3200 temporal observations), does not mitigate the
problem. That is, substantial differences exist between the MLE approach advocated in the main text and MSD
based approaches (see Fig. S5). Since multiple GFPs are attached to the mRNA particle,1 it makes sense that
the effective measurement noise increases over time (less photons can be collected per unit time as various GFP
dyes randomly photobleach resulting in increased position uncertainty); the MLE approach shows this trend in
the localization precision whereas the MSD approach does not. The noisy and biased nature of the estimated
effective measurement noise (i.e., localization precision) is due to artifacts associated with suboptimal “time-lag”
selection.2

1.5 Exploring Sensitivity to Sampling Parameters

In this section, we demonstrate how parameters reported in the main text are changed when various sampling
parameters are altered.

1.5.1 Varying Local Window Size W and Sampling Rate ∆t

Figure S6 corresponds to in Figs. 1-2 of the main text.
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Fig. S 5. Windowed diffusion and measurement noise (for each spatial dimension) vs. time for the MSD estimator
discussed in Ref.1 and the MLE approach used in the main text. The window size W = 400 and the underlying trajectory
is shown in Fig. 1 of the main text.

1.5.2 Predicted Force Dependence on Window Size W

Figure S7 corresponds to in Figs. 3-4 of the main text. Note that the raw measurements coming from the
microscope are corrupted by noise; the force magnitude we plot utilizes the Kalman filter’s estimate6,7 of the
unobservable state r (then the magnitude of F (r) is computed).

2. SUPPORTING THEORY AND METHODS

2.1 Mapping Continuous SDEs to Discrete Kalman Filter Models

Here we outline several procedure for extracting the transition density from the assumed continuous time over-
damped Langevin equation considered. The Kalman filter equations corresponding to the discretely observed
SDE considered throughout this work are as follows:

ri+1 = A′ +B′ri + qi+1 (1)

ψi = ri + εi (2)

qi+1 ∼ N (0, Q∆ti) (3)

εt ∼ N (0, Ri) (4)

where we define ∆ti := ti+1 − ti , B′ := exp(ΦB∆ti) and A′ := −B−1A + exp(ΦB∆ti)B
−1A. The primes are

used to indicate the discrete sample analogs that correspond to the continuous time SDE model.7 The covariance
matrix Ri characterizes the mean zero Gaussian noise associated with the measurement ψi gathered at discrete
time i. The process noise covariance, Q∆ti , associated with the discretely sampled state can be computed from
the corresponding continuous SDE. The process noise covariance of a discretely observed SDE in the general
(non-stationary or stationary) multidimensional linear case is given by:8

Q∆ti :=

∆ti∫
0

2 exp(ΦBs)CCT exp((ΦB)Ts)ds (5)

where the subscript on Q is used to emphasize the dependence on the time between successive observations.
Exponentials with matrix arguments imply matrix exponentials. The above integral can be solved exactly by
using established tools from control theory.7,9, 10 We have written equations for the case where data is spaced
∆ti time units apart, hence arbitrary time spacing case can be considered (as would be needed with blinking
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Fig. S 6. Illustration of SDE parameter sensitivity on “time lag” (or “subsampling”) and window size. In all cases, the z
component of the local diffusion coefficient and the “spring constant” (x, y, and z were plotted in Fig. 2 of the main text;
z components were selected because it showed interesting trends and had the largest experimental measurement noise;
x and y component results were similar). Panels A-B plot results obtained using 3 different “subsampling” parameters.
The term “subsampling” is used here to convey that the microscope generates images every 4ms at the highest sampling
frequency of the data, but we can skip every entry and observe images every 8ms, 12ms, etc. (however the net time spanned
by a local window used for parameter estimation is constant and independent of the subsampling rate). In Panels C-D
the same estimated quantities are plotted, but the time of observation spanned by local windows is varied (the window
size ranges from 200-400 observations; however, each trajectory was observed at the finest temporal sampling frequency of
4ms). Since the temporal sampling frequency is fixed in Panels C-D, changing the window size only decreases the number
of observations that can be used for estimation and inference (the “spring constant” is the hardest parameter to estimate
in terms of asymptotic parameter uncertainty in many situations,5 so decreasing the number of samples for parameter
estimation affects this quantity the most as can be observed in Panel D). In all panels, one can see that the estimated
SDE parameters are relatively insensitive to the sampling parameters selected; the changes induced by “heterogeneity”
in the cell are large enough in magnitude to dominate the effects of bias and variance induced by or estimation scheme.

quantum dots). In the main text and results reported ,∆ti was constant. The quantities above can be used for
both filtering (inferring the unobservable rt given ψt) or for estimating unknown parameters. One can simply plug
the above expression into the equations provided in Chapter 13 of Hamilton for either filtering or estimation.6

Note that if the linear model above is consistent with the model and the initial conditions are precisely known,
then the unobservable state is a multivariate Gaussian process. This idealized process is completely (statistically)
characterized by its first two moments.6,8 So if the measurements are also Gaussian (all assumptions stated
here will later statistically tested against data), then computing the likelihood of the observations, ψt only
requires the mean and covariance of a sequence of Gaussian random variables6,7 often called the “innovations”.11
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Fig. S 7. 3D force magnitude (implied by the estimated SDE model) vs. time for the trajectory shown in Figs. 3-4 of
the main text. Different W window sizes were used for the fit (400,338,275,200); these cases are plotted in Panels A-D,
respectively. The different time windows are indicated by solid vertical lines. All models predict a large force around time
3-6 seconds (this is phenomenon relatively independent of W , though the magnitude of the forces does change slightly).
The tagged particle would likely be considered static or perhaps confined via traditional analysis in the ≈ 3-6 second time
window. However, one can easily reject the “static particle” hypothesis and one needs to include 3D interactions in order
to generate a diffusion model that is not rejected by the data (the SDE models considered include the case where one is
only measuring apparatus noise and no dynamics).

Computing the innovations requires iterating the Kalman filter.6,7, 11 After Q∆ti is computed, this is fairly
straightforward.6,7, 11

The above discussion is for general linear equations. However, to illustrate tools familiar to researchers
in statistical physics, we focus on a special case where the eigenvalues of B are all real and negative (a case
implicitly assumed by common models such as a corralled diffusion12). The mean expression is unchanged in
this special case, but the covariance computation simplifies if one uses the analytical stationary distribution (or
“steady state”) formulas from statistical physics.13 Knowledge of the stationary distribution allows the following
compact expression for the conditional (multivariate normal) distribution of the underlying state:14

ri ∼N (µi, Q∆ti) (6)

µi =−B−1A+ exp(ΦB∆ti)(ri−1 +B−1A) (7)

Q∆ti =Λ− exp
(

ΦB∆ti

)
Λ exp

(
(ΦB)T∆ti

)
(8)

∆ti =ti − ti−1 (9)

where Λ is the covariance characterizing the Gaussian stationary density associated with a given “stable” linear
SDE. Expressions for Λ under various models/conditions can be found in textbooks, e.g. Risken;13 alternatively,
the solution for more general linear models can be obtained by solving for the steady state solution of the
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Riccati matrix equations where terms involving the measurement noise are set to zero.7 The utility of the above
expression is that the conditional mean and variance of the state can be utilized by the Kalman filter to compute
the likelihood function of the innovation sequence. The Kalman filter can provide p(ψi+1|ψi; θ) using the mapping
between continuous SDEs and discrete Gaussian time series shown here; see Hamilton6 Chapter 13 for details.

2.2 Generating Initial Conditions for a 3D SDE MLE Search

In principle, the MLE parameters can be found by simply optimizing the likelihood cost function stated in the
methods. However, it is often both practically and theoretically useful to have a procedure for systematically
generating reasonable initial guesses to the parameters before one attempts a non-linear MLE search.15 One
computational complication encountered when estimating an SDE is that one can get stuck in a local minimum
of the likelihood function that does not correspond to the MLE. Fortunately, the goodness-of-fit tests discussed
in later sections can help identify this problem. Identifying a poor fit is helpful but rejection can occur either
because one is stuck in a local minimum or because the assumed model (with the global MLE parameter computed
exactly) is inconsistent with the observations. If one has a procedure for generating reasonable initial guesses
to the model, and if one rejects the model given the data, then one can be more confident the rejection is due
to poor modeling assumptions (and not being stuck in a local minima). The next two subsections outline our
procedure for generating initial conditions for the overdamped Langevin SDE discussed here and in the main
text. It should be noted, that within each local window, we subtract the time averaged measurement vector from
all observation in that window (i.e. the resulting data analyzed has an empirical mean exactly equal to zero).
This was done only to simplify interpretation of the parameters. For example, when the mean is subtracted, the
parameter A corresponds to the instantaneous force at the empirical mean of the position measurements in the
local window; this is the quantity reported in Fig 2 of the main text. MLE results reported unaffected by this
alternative formulation (and a trivial mapping can remove the influence of the centering).

2.2.1 Initial Estimates of the Thermal and Measurement Noise

One advantage of assuming and fitting an SDE is that the effects of thermal and measurement noise can be
systematically and accurately estimated in the time domain if one has frequently sampled data.16–18 In the
first stage of obtaining initial parameter estimates, we estimate a directed diffusion model of the form rti+1

=
rti + (ti+1 − ti)v + η from noisy measurements ψti = rti + εti where v is the constant velocity vector and η is
a Gaussian random variable with mean zero and variance σ2 (note: this notation corresponds to a statistical

mechanics diffusion coefficient of σ2

2 ). The classic directed diffusion model allows one to separately estimate a
MLE parameter for each component of r = (x, y, z), i.e. the parameters associated with x are θ = (vx, Rx, σx)
and these are assumed to be statistically independent of the corresponding y and z parameters. The more
general multivariate case (e.g. allowing for correlated diffusive noise) can also be readily handled,18 but we
restrict attention to the scalar case to facilitate exposition. We use ∆t to denote the uniform time sampling rate
used in our experiments. However the methods presented in this subsection do not require uniform temporal
sampling in order to obtain exact likelihood expressions (this can be relevant to other super-resolution or quantum
dot applications). If the observations are consistent with the model and the parameters are known, then the
transition density corresponding to {ψti − ψti−1

−∆tv}nj

i=1 ≡ {∆ψti −∆tv}nj

i=1 is a multivariate Gaussian with
mean zero and covariance:17,18

C ≡



σ2∆t+ 2R −R 0 . . . 0

−R σ2∆t+ 2R −R
. . . 0

0 −R σ2∆t+ 2R
. . . 0

...
. . .

. . .
. . . −R

0 0 0 . . . −R σ2∆t+ 2R


(10)

The eigenvalues and eigenvectors of the above matrix can be computed analytically if one notes that the matrix
above can be written as the sum of the identity matrix multiplied by σ2∆t minus the second forward difference

operator matrix multiplied by the scalar R. Eigenvalue “i” of the latter matrix is given by 4R sin2
(

πi
2(nj+1)

)
, so
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eigenvalue i of the above matrix is simply σ2∆t+4R sin2
(

πi
2(nj+1)

)
. The eigenvectors can also easily be computed

with a compact expression (and hence C−1 can be explicitly constructed), but one only needs to evaluate the
logarithm of the determinant of C (which only requires eigenvalues) and V TC−1V (V denotes a column vector
containing each of the observations {∆ψti − ∆tv}nj

i=1) in order to evaluate the likelihood function.17,18 We
recommended exploiting the tridiagonal structure and sparse matrix solvers19 in order to efficiently evaluate
the likelihood function instead of forming the exact matrix inverse (which is dense). Doing so can save one
substantial time if one is analyzing many long SPT trajectories. A quasi-likelihood analysis17,18 of the above
model has some nice statistical properties . The utility of these properties in regards to SPT applications will be
demonstrated in the Simulation section. After one finds the MLE (or quasi-MLE) of the model discussed here
for each component, one can form the two diagonal matrices R̃ and C̃ each matrix containing the output of the
noise parameters of the directed diffusion model on the diagonals (the velocity parameter along with C̃ can be
used to provide an initial guess to the vector Ã). Tildes are used to denote the initial guesses formed using the
procedure outlined here. Also note that we did not use θ to emphasize that the estimated parameters above are
scalars (the vectors and matrices are formed by merging the x,y,z results).

2.2.2 Initial Estimates of the “B” Matrix

There are a variety of approaches one can entertain for estimating the matrix B associated with the linear SDE
considered. Our approach utilizes the Riccati matrix equations7 to generate initial guesses. Here we utilize some
tools associated with the continuous Kalman filter.7 Recall that in the models we are considering, the force is
assumed to come from the gradient of a potential that has existent second derivatives everywhere (hence B,
representing the “elasticity” or gradient of the force, is a symmetric matrix). The relevant Riccati equations are:

Ṗ ≡ΥP + PΥT +Q− PR−1P (11)

0 =ΥPss + PssΥ
T +Q− PssR−1Pss (12)

where P is the covariance associated with the Kalman filter,6,7, 11 Υ is a matrix related to the SDE parameter B
of interest (namely Υ ≡ ΦB ≡ CCTB/(kBT )), Q is the “instantaneous” covariance of the process noise in the
uniform time spacing case (= 2CCT), R is the covariance of the measurement noise, and Pss filter covariance
reached at “steady state”. In order to estimate Q and R, we appeal to the estimator advocated in Refs.17,18

except that we include the constant directed diffusion parameter A in the model in addition to noise estimates (see
previous section for the likelihood expression of this model). Recall that in all cases, we compute the empirical

mean of the measurements in window j, denote this quantity by µ̂j , and subtract this from the measurements in
window j. To estimate Pss, we first compute the empirical covariance of the measurements in a local window j.
Denote this empirical covariance by Ĉov

(
{ψi}nji=0

)
. In the models considered, this empirical covariance can be

used to provide an estimate of Pss, denote the estimate by P̃ss, by the equation P̃ss = Ĉov
(
{ψi}nji=0

)
− R̃. One

can then utilize established matrix methods by plugging in Q̃ = 2C̃C̃
T

, defining Υ̃ = C̃C̃
T
B̃/(kBT ), and solving

the the transpose of Eqn. 12 for the symmetric B̃ by replacing the estimates denoted by tildes for their analogs
without tildes appearing in Eqn. 12. For discrete observations, a heuristic we have found useful is to compute
P̃ss as before, but solve the Riccati equation by omitting any terms including R (the estimate P̃ss attempts to
remove measurement noise effects and back out the “steady state” covariance). Well established linear algebra
tools can be used for this computation;9,10 such tools exploit the symmetric nature of B̃B. The symmetric case
considered can also be used to generate initial conditions for more general models (e.g., those having forces not
coming from the gradient of a potential). One can then use these initial estimates (denoted by tilde) of the
model parameters to start optimization search for the MLE parameters.

The practical and theoretical utility of assuming a stationary filter covariance is admittedly questionable in
some scenarios. For this reason, we suggest using other estimates of B, e.g. setting all quantities in the matrix
to zero or finding the linear SDE MLE parameter ignoring measurement noise all together ∗ to generate other
candidate initial guesses that do not appeal to this type of assumption.8 One should also be aware that it in 3D

∗In 1D this permits a closed-form expression for the MLEs without requiring a parameter search.5
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SDE estimation, the mathematical conditions guaranteeing that the parameter vector is uniquely identifiable are
nontrivial.6,7 Even if the observed data follows the assumed model and the parameter is identifiable, one has to
be careful in finding the global optimal parameter in a nonlinear MLE search.6

2.3 Qualitative Description of Goodness of Fit Tests

Although the Kalman filter has been extensively utilized in control and estimation,7,11 rigorous statistical meth-
ods for analyzing the the goodness-of-fit of the model have been lacking. While it is well-known that if the unob-
servable state and observed measurement data is consistent with the assumed SDE and measurement model, then
the normalized “innovation sequence”11 † is independent and identically distributed ( i.i.d.). Furthermore, it is
known that the distribution of the normalized innovation sequence follows a multivariate Gaussian distribution
characterized by a mean of zero and an identity matrix as the covariance. These statistical properties can be
used for filter tuning (i.e., parameter estimation),11,20 but hypothesis testing methods which jointly check the
independence and the standard normal distribution assumption along a single trajectory have only recently been
developed.3,21

In this subsection, the basic idea behind the goodness-of-fit approach developed by Hong and Li is presented
in a descriptive fashion using a classic model in the SPT literature (a so-called directed diffusion model12). The
example used to illustrate the basic idea behind method is the following: If a tagged particle is subjected to
random thermal forces which can be modeled by a Brownian motion process and measurement noise does not
contaminate the observational data (an admittedly unrealistic assumption), a directed diffusion model would
state rti+1 = rti + (ti+1 − ti)v + η where again v is the constant velocity vector and η is a Gaussian random
variable with mean zero and variance σ2. If this model is consistent with the data and the parameters are precisely
known, one can transform the series {ψti}Ni=0 (which equals {rti}Ni=0 because measurement noise is assumed to
be nonexistent) to {νti}Ni=0 where νti =

(
rti − rti−1

− (ti+1 − ti)v
)
/σ. The advantage of this procedure is

that a non-stationary time series can be transformed into a sequence of i.i.d. random variables {νti}Ni=0 having
a standard normal distribution if the assumed model is consistent with the measurements and the directed
diffusion model parameters are precisely known. Time series methods3,21 can be used to systematically jointly
test both the distribution of the transformed variables and the independence assumption. This is accomplished
by transforming the ν series into a suitable test statistic.

Although the transformation shown here is trivial for the directed diffusion model (it only requires evaluating
the cumulative distribution function of standard normal random variable evaluated at νti), noisily measured
nonlinear Markovian SDEs can also be transformed into a “generalized residual” series21 by introducing the

probability integral transformation (PIT), or Rosenblatt transformation, defined by Zi ≡
∫ ψti

−∞ p(ψ|ψti−1
; θ)dψ.3

Technical details associated with the more general nonlinear multivariate SDE are discussed in Refs.3 and.22

After the generalized residuals are formed, an “ominbus” Q-test3 can be used to test if all known statistical
properties of the PIT sequence hold. In addition, the M-tests introduced in Ref.3 can be used to for a subset
of the statistical properties that should hold in the PIT sequence. The Q-tests are “omnibus” in the sense they
check for every possible model misspecification3 but the price one pays for this is power, i.e., one may fail to
reject an incorrect model because one is checking too many features simultaneously.23 Although the M-test does
not check the uniform distribution shape, it is useful in detecting statistical dependence induced by dynamical
features in the data not accounted for in the models considered (several examples will be shown later). Both tests
can be applied to the innovations of a Kalman filter whose parameters are calibrated from data. Advantages of
using the generalized residuals vs. standard tools leveraging innovations to assess the suitability of an assumed
model to observational data will be presented in the results and is discussed in length elsewhere.24 A summary
of the equations derived in3,21 needed to evaluate the Q and M test statistics is provided in the next subsection
for the reader’s convenience.

2.4 Sources of Variation in Test Statistics

It should be noted that there are several sources of variation in this hypothesis testing procedure. Even if an
oracle provides the “truth” parameters, the M and Q test statistic would be random variables possessing a certain

†The normalized innovation is the standard innovation left multiplied by the square root of the inverse of innovation
covariance matrix. These quantities can be computed from the data and given filter parameters.11
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distribution under the null hypothesis (here the null hypothesis is the PIT distribution using the correct model
and the fixed oracle-given parameter). For finite samples sizes (again plugging in one oracle-given parameter)
the distribution of the tests statistic is different from the asymptotic standard normal distribution.21,25 Another
source of variation is the propagation of parameter uncertainty induced by finite sample sizes. Even if one fixed
parameter generates every time series, the MLE estimates for each trajectory will contain parameter sampling
noise (though this effect disappears for suitable “

√
N” estimators3). Yet another source of variation in the M

and Q statistics is induced by varying types of model misspecification.

2.5 Mathematical Details of Goodness-of-Fit Testing and Model Selection Criteria

The PIT transformation of a correctly specified model has a known distribution U [0, 1] and each observation is
statistically independent of the other observations.3 This condition does not require one resorting to asymptotic
arguments, so hypothesis tests can be established which simultaneously check if the the transformed Zi’s (defined
in Section 2.3) are statistically independent and have the U [0, 1] shape. Deviance from either condition suggests
that there is evidence in the data showing statistical problems with the assumed and fitted model. Hong and Li
proposed the so-called “omnibus” Q test statistic (Eqn. 14) which jointly checks both the i.i.d. and U [0, 1] shape
assumption. The M -test does not check for the U [0, 1] shape of the PIT transformation but instead focuses
on autocorrelations in the Zi’s. In the case of a Kalman filter, this test is fairly similar to analyzing only the
autocorrelation function of the innovations; however, the method analyzes the PIT (or generalized residuals) and
can be used with nonlinear and/or non-Gaussian dynamical models where a likelihood function is available (as
we will show later, the test can detect such features in data where linear models are assumed whereas classic
Kalman filter diagnostics fail). The M -test is also useful as a diagnostic tool3 because it utilizes all moments of
an assumed (nonlinear) dynamical model as opposed to just analyzing the first two moments. Tools of this sort
will be helpful in assessing our simplified models given observational data.

We note that for general multidimensional processes, there are open questions and issues associated with
marginalizing and formation of the PIT sequence.3,22 The 1D goodness-of-fit tests were formed as recommended
originally in Hong and Li.3 For the multivariate linear cases, we applied the PIT to the sequence of normalized
innovations (formed by applying the matrix square root of the filter covariance associated with the MLE to
the innovation vector at each time). For a correctly specified model, the latter sequence is i.i.d. normal if the
Kalman filter model is consistent with the observations, so the PIT associated with this transformed sequence
can be readily formed as in the scalar case, except that the length of the PIT series now increases by a factor
of three for (x, y, z) measurements. In the 3D case, we formed the longer 1D PIT sequence by interweaving the
PIT computed using the normalized 3D innovation vector (i.e., at each time, we alternated between recording
the innovation in the x,y, and z position). We also explored stacking (i.e., place all PITs computed using the
normalized x innovations in the order of the corresponding temporal observation, followed by all of those PITs
computed using normalized y innovations, etc.). The test statistic results obtained were not very different in
either case.

If the underlying data generating process is outside of the linear Gaussian class, extensions of other recent
multivariate goodness-of-fit methods for non-stationary SPT signals show promise.22,26,27 The interesting tra-
jectories we reported in the main text were discovered when the 1D analog of our SDE models were strongly
rejected along several windows of a 3D trajectory. Again, in 1D, PIT based methods have been shown to exhibit
favorable power in many situations. Simulation results are presented where the PIT based method is shown to
be able to detect 3D interactions with reasonable power using the approach discussed in this Section.

After the parameters of the SDE are estimated, the raw data is used to compute the PIT sequence using
the methods stated above. Recall that the i.i.d. U [0, 1] property holds at the exact data generating process. In

practice, one plugs in an MLE θ̂ and uses the SDE model structure along with the observations to compute the
associated Ẑi’s. This sequence is then used to compute the quantities reported in Hong and Li,3 namely:

M̂(m, l) ≡
(N−1∑
j=1

w2(j/p)(N − j)ρ̂2
ml(j)−

N−1∑
j=1

w2(j/p)
)
/
(

2

N−2∑
j=1

w4(j/p)
) 1

2

(13)
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Q̂(j) ≡
(
h(N − j)Î(j)− hA0

)
/V

1
2

0 (14)

Î(j) ≡
1∫

0

1∫
0

(
ĝj(Z1,Z2)− 1

)2

dZ1dZ2.

ĝj(Z1,Z2) ≡ 1

N − j

N∑
n=j+1

Kh(Z1, Ẑn)Kh(Z2, Ẑn−j)

A full description of the terms appearing above is given in Ref.3 where they are first derived, but the essence of
the above two test statistics can be understood by noting that h is a bandwidth used along with a specialized
nonparametric kernel function Kh(·, ·) aiming to estimate a U [0, 1] distribution on the square (and also take into
account boundary effects) given a finite set of observations and N is the number entries in the observed time
series. In the definition of Q, j is a user specified index that selects the spacing between the Ẑn’s (a value of
j = 1 is commonly used.3 In the definition of M̂ , ρ̂ml(j) denotes the sample cross correlation between Ẑmn and
Ẑln−|j| and w(·) is the Bartlett kernel;3 note that in M̂(m, l), the data now selects j but one specifies the integer

parameters m and l. The expression for the remaining constants A0 and V0 are derived and provided in Ref.3

2.6 Model Selection Criteria

We also considered model selection in addition to goodness-of-fit in the main text. The Akaike information
criterion (AIC) and Bayesian information criterion (BIC) are classic methods for selecting models.28,29 Each

penalizes model complexity in a different fashion, namely AIC= −2`(θ̂) + 2k and BIC=−2`(θ̂) + k log(N) where

k represents the number of components in θ̂ and N is the number of observations used to compute the MLE
parameter estimate (`(·) denotes the log likelihood). Lower values denote a “better” model (in the main text we
compare differences between the AIC and BIC computed using 1D and 3D likelihoods evaluated at the MLE). In
the plots presented in the main manuscript and in the SI, we plot ∆AIC and ∆BIC; these quantities represent
the difference in information criteria between the 3D and 1D models (a value less than zero suggests that a 3D
model is favored).

3. ADDITIONAL SIMULATIONS (METHOD VALIDATION)

Here additional simulation data is used to further illustrate some points made in the primary text. For example,
we provide a brief study demonstrating how a maximum likelihood method performs as compared to the tradi-
tional MSD analysis with simulated data mimicking some features of experimental ARG3 data (bias and variance
of parameters estimates in a batch of trajectories generated by a fixed SDE are studied). Both estimation and
inference results are shown for the analysis of a 1D SDE. In addition, a more detailed discussion illustrating
how legacy Kalman filter innovation inspired goodness-of-fit analysis methods would fail to detect some features
present in simulation data are presented in detail.

3.1 1D Estimation and Goodness of Fit Results for Simulation Data

The first set of set of results focuses on a simulated 1D SDE data where the measurement noise and/or the
diffusion coefficient was allowed to vary over time. Four cases are studied, and in all cases 1,600 observations
uniformly spaced 4 ms apart were sampled from an SDE with no drift. The reference case (Case 1) had a
constant diffusion coefficient and measurement associated with the t = 0 value of the functions reported in Fig.
S8. Case 2 had the same constant measurement noise, but used the diffusion function shown in Fig. S8; Case 3
used a constant diffusion coefficient evaluated at t = 0, but used the time dependent measurement noise shown
in Fig. S8 whereas Case 4 used both time dependent noise functions in Fig. S8. The diffusion coefficient was
computed using both the MSD analysis (attempting to account for measurement noise) reported in1 and with
the MLE approach presented here in Section 2.2. The mean and standard deviation of parameter estimates
obtained over repeated simulations for the four cases discussed here are reported in Table S2. Note that because
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we use a deterministic function of time for the diffusion coefficient, we can easily compute the time averaged
integrated diffusion coefficient18 (i.e., the effective diffusion coefficient) in all cases considered. The asymptotic
mean and variance of the parameter distribution of of the quasi-MLE parameter estimates can be obtained in
closed-form.18 When the measurement noise and diffusion coefficient are frozen (Case 1), both estimators have
the same average value, but the standard deviation (or “parameter uncertainty”) of the MSD based estimator
is substantially larger than that of the MLE based approach. In the cases where the diffusion coefficient is
not constant (Case 2 and 4), the estimator advocated in Ref.18 has a mean consistent with the integrated time
averaged diffusion coefficient (reported in the row labeled “Truth”) whereas the MSD based estimator has a mean
away from the effective diffusion coefficient in addition to being associated with a higher parameter uncertainty.
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Fig. S 8. Time dependent measurement and thermal noise used in MC simulations.

Table S 2. Diffusion Coefficient (MSD vs. MLE). Both methods account for measurement noise, but the MLE method
directly handles correlations induced by differencing measurements.16

Case 1 2 3 4
MSD 0.150 (0.123 ) 0.078 (0.069 ) 0.151 (0.124 ) 0.079 (0.069 )
MLE 0.160 (0.047 ) 0.092 (0.032 ) 0.160 (0.056 ) 0.092 (0.038 )
Truth 0.15 0.093 0.15 0.093

3.2 Demonstration of Problems with Classic Kalman Filter Diagnostics on SPT Data

The previous results just demonstrated that time varying measurement noise and diffusion coefficient affected
parameter estimates, but now we focus on using goodness-of-fit tests to detect departures from standard assump-
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tions employed in SPT analysis. Namely we assume constant diffusion and measurement noise and we want to see
if this incorrect modeling assumption can be detected in the sample sizes under consideration. Table 3 displays
the goodness-of-fit tests obtained using the Q statistic. For a fixed parameter, this test statistic asymptotically
has a standard normal under a correctly specified model.3 In finite samples, some simple corrections can be
made21 ‡. Reliably computing this test statistic requires an accurate means for evaluating the transition density
of an assumed model. We consider two cases, one where correlation is correctly accounted for in the transition
density (i.e., use the likelihood discussed along with Eqn. 10 ) and one where correlation induced by differencing
measurements is not (this case can be obtained by ignoring the off-diagonal matrix entries in Eqn. 10). The
incorrect transition density described in the latter case is commonly used in the SPT literature, e.g. see citations
in Berglund.30 We emphasize that the transition density in the presence of measurement error requires one to
account for correlation if one wants to carry out rigorous statistical inference. Carrying out rigorous inference
(checking all model assumptions) is important because effective SDE parameters are often changing over time
in nanoscale systems.

Using an incorrect transition density would obscure detecting a time changing effective measurement noise
or diffusion coefficient (using the wrong transition density may cause excessive rejection even if the modeling
assumptions are consistent with the experimental data). Table 3 demonstrates that ignoring statistical depen-
dence causes one to make incorrect inferential decisions even for a correct model (e.g., Case 1 is strongly rejected
for all observations). One can also see that time varying measurement noise is easier to statistically detect than
time varying diffusive noise in this example.

Table S 3. Goodness-of-Fit Results (Proxy vs. Exact MLE [QMLE]). The case labeled as “proxy” ignores statistical
dependence induced by differencing measurements (Ref.30 cites several publications making this error; the scenario we
consider is described in the above paragraphs) whereas the case labeled “exact” correctly accounts for the dependence
induced by differencing measurements.

Case 1 2 3 4
Proxy 20.457 (3.339 ) 34.699 (4.171 ) 45.595 (5.531 ) 51.466 (5.800 )
Exact -0.433 (1.129 ) -0.133 (1.121 ) 7.062 (2.471 ) 6.642 (2.435 )

This subsection concludes by discussing and demonstrating the utility of generalized residual based statistics
(such as the Q statistic) over classical diagnostic statistics used in stochastic process control theory.7,11 It is well-
known that a correctly specified Kalman filter based model is associated with an innovation sequence which can be
normalized to produce an i.i.d. sequence of normal random variables, and several methods exist for separately
checking for normality or correlation,7,11 but rigorous methods for simultaneously checking the shape (i.e.,
distributional assumptions) and independence assumptions simultaneously were lacking until the development of
time series tools like those advocated in Refs.3,21,26 In order to illustrate the utility of simultaneously checking
the shape and independence assumptions, we present an analysis of a normalized innovation sequence (and
the corresponding PIT random variable) for one time series realization from data whose population statistics
are shown in Tables S2 and S3. Figure S9 displays histograms of the normalized innovations (Panel A) and
the generalized residuals (Panel B) as well as two autocorrelation functions derived from these quantities for
one trajectory realization from Case 4. Panel C plots the basic sample autocorrelation of each and Panel D
plots the sample autocorrelation of of the squared PIT random variable sequence. The mean and variance of
the data measured in Panel A was 6.287 × 10−4 and 1.0006, respectively. Using the first two moments of the
residuals alone seems to suggest that the observed data was consistent with the model assumptions (despite the
fact that the data and assumed model are not consistent in Case 4). Analyzing the full distributional shape
alone via the Kolmogorov-Smirnov test produced a p-value of 0.0656 for both Panels A and B (the number
was identical because a known one-to-one transformation connects observations in Panel A to those in Panel
B in this example). Panel C displays the autocorrelation typically analyzed when doing diagnostic checking
on a Kalman filter.7,11 Again there is some evidence suggesting an inconsistency between model assumptions
and the data, but evidence using correlation information in the normalized innovation or generalized residuals
alone is relatively weak. However, if one analyzes the sample autocorrelation of the square of the normalized

‡The Case 1 correlated case can serve as our “empirical reference null” here.
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innovations (this quantity is known to be relevant to detecting departures from Kalman filter type assumption
due to noise misspecification induced by “volatility” effects21), then misspecification becomes readily apparent.
The problem with this approach is that determining which functions of the innovations (here we analyzed the
squares because of a priori knowledge of the nature of model misspecification) is difficult if one does not know
in advance why the assumed model might be inconsistent with the experimental data. Having a test statistic
checking against all possible model misspecifications, i.e. and “omnibus” test, can be useful and scientifically
insightful. The test introduced in Ref.3 is omnibus in that it simultaneously checks all distributional assumptions
as well as dependence structure. This can dramatically increase power; in this case, the Q statistic computed
using the generalized residual for this realization was 7.379. This value far exceeds any threshold typically used
in diagnostic checking.

The basic idea of analyzing the sequence of normalized innovation sequence is similar in spirit to the general-
ized residual or PIT approach discussed here except the latter aims at checking all distributional and dependence
assumptions simultaneously (this can be important if there are features in the data that are not Gaussian).
Another important difference is that the approach of Hong and Li is applicable to any data (stationary or
non-stationary) and stochastic model where a transition density can be accurately approximated whereas the
Kalman filter based innovation analysis is restricted to linear models.11 Note that we only displayed results
from a single time series, one does not need an ensemble to do diagnostic testing with even if the data comes
from a non-stationary process (the diffusion plus measurement noise model studied here is not a stationary
process and non-stationary processes are common in SPT applications). Analyzing the goodness-of-fit of a fitted
model against a single realization is useful in studying dynamical heterogeneity and stays closer in spirit to the
inspiration behind many single-molecule experiments. Table 3 demonstrates that the high rejection afforded by
analyzing the Q statistic (simultaneously checking shape and independence) was not merely a fluke due to a
fortuitous realization.

3.3 3D Goodness-of-fit simulation results

Table S 4. Goodness of Fit for 3D Simulation Data Corresponding to Table 1 of the main text.

Case 1 2 3 4
Q -0.347 (1.200 ) 0.176 (1.154 ) -0.270 (1.173 ) 0.157 (1.140 )
M -0.484 (0.680 ) 1.660 (1.642 ) -0.799 (0.760 ) 8.036 (2.975 )

In Tab. 4, the average and standard deviation of the M and Q tests (computed for each segment using the
computed MLE parameters in that segment) are provided for the four cases studied with the main text Table
1. These tests are asymptotically distributed as a standard normal under a fixed data generating process.3 We
verified that the normal test statistic distribution was reasonable for our sample sizes (i.e., the mean/variance
reasonably characterized the test statistic distributions). A one-sided hypothesis test would reject (with Type I
error rate, α, = 0.05) any test statistic exceeding 1.64 if the test statistic distributions follow a standard normal.
There is ample evidence to reject the model neglecting 3D interaction terms using the M statistic for any sample
size. The mean of the Monte Carlo simulations actually exceeds the α = 0.05 threshold for all 1D cases (note:
over half of all incorrectly specified cases were rejected so the empirical mean is not dominated by a few outliers).
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Fig. S 9. Analysis of Innovation and PIT “Residuals”. The top two panel show the distribution of the innovations
normalized by the matrix square root of the Kalman filter innovation covariance at each time step (Panel A) and the
corresponding PIT generalized residuals (Panel B). The bottom two panels show the autocorrelation of these residuals
(Panel C) and the square of the residuals (Panel D). The thick solid lines correspond to the 95% confidence band under
the null (the null assumes no temporal correlation between the random variables).
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