Pattern search in BioPAX models
Supplementary data

A sample pattern

Here we describe a pattern sample for BioPAX models defined using the pattern search
framework described in the manuscript. This pattern captures directed relations between pair of
proteins, where the first protein controls an interaction that the second protein participates in.
The aim of this pattern is to detect units of signaling in the cell with upstream and downstream
proteins identified. The pattern makes sure that the controller protein is not also a participant of
the interaction.

Illustration
controls -
controller PE ——{ Control —— Interaction
controller &
of has
ralated participant
complex
PE or self affected PE
related
controller simple
simple PE < *PE or self

affected simple PE

iz Protein
reference of has reference

| Y
s “”m"ﬂ&[)mntmller PR Laffected PR

In the element names, PE is used for indicating a PhysicalEntity, and PR is used for
indicating a ProteinReference. A “simple PE” refers to a PhysicalEntity thatis not a
Complex, and has an associated EntityReference, whereas other PE can be a Complex, or a
generic homology node that does not have an associated EntityReference. Note that the

homology and complex memberships can be arbitrarily nested in BioPAX, and this pattern
captures all necessary connections between them.

Java code

import org.biopax.paxtools.model.level3.Protein;
import org.biopax.paxtools.model.level3.ProteinReference;



import org.biopax.paxtools.pattern.Pattern;
import org.biopax.paxtools.pattern.constraint.*;
import static org.biopax.paxtools.pattern.constraint.ConBox.*;

// Start with the reference of the controller protein.
Pattern p = new Pattern(ProteinReference.class, "controller PR");

// We are interested in human data.
p.add(isHuman(), "controller PR");

// Get to a PhysicalEntity of the controller protein.
p.add(erToPE(), "controller PR", "controller simple PE");

// Allow generic entities and complexes in the pattern. “controller PE” can be a parent
// generic entity, or a parent complex of “controller simple PE”. These two objects can
// also be equal, so involvement of the complex structure is not necessary to detect the
// pattern.

p.add(linkToComplex(), "controller simple PE", "controller PE");

// Get to the Control object that the first protein is a controller.
p.add(peToControl(), "controller PE", "Control");

// Get to the interaction controlled by the Control.
p.add(controlToInter(), "Control", "Interaction");

// Make sure that none of the participants of the Interaction is related to the
// controller protein.
p.add(new NOT(participantER()), "Interaction"”, "controller PR");

// Get to an affected participant of the Interaction
p.add(participant(), "Interaction", "affected PE");

// If the affected participant is a generic or complex node, get to the simple

// EntityReference. “affected PE” and “affected simple PE” can be equal, so that the
// pattern can also match to simple structures.

p.add(linkToSimple(), "affected PE", "affected simple PE");

// Make sure that the affected molecule is a Protein.
p.add(new Type(Protein.class), "affected simple PE");

// Get to the reference of the affected protein.
p.add(peToER(), "affected simple PE", "affected PR");



Running time

Running time of pattern search depends on the structure of the pattern. It also depends on the
structure of the BioPAX model. The search of this sample pattern traverses through controlled
interactions and its participants. It also traverses through homology and complex memberships.
In the worst case, where every protein is a parent generic molecule of all other proteins, and all
pairs of proteins are connected through an interaction, the search would be infeasible due to long
running time. However, this is not the case in current biological models. Proteins generally have
a few generic parents, if any. Number of interactions controlled and participated are generally low
for most proteins, while it can be high for hub proteins. Using the O-notation, we can say that the
running time is bounded by O(kn), where n is the number of proteins, and k is the average
number of other proteins that can be reached through a controlled interaction. We observe that k
is around 12 in Pathway Commons database.

Results

Searching this pattern in Pathway Commons database takes under 1 minute using a PC with 3.4
GHz processor and 8GB of RAM, and returns 32599 matches with 4695 proteins that have an
associated HGNC symbol. These relations are given in the supplementary data file
“directed-relations.txt”. Below are three example matches, whose details are illustrated with
ChiBE.

ZDHHC21 --> NOS3 IL12A --> JAK2

IL128 |
I-12 | (iL12RB1)
I =

(PALM-CoA) JAK2 |

= -ﬂ"’
E

Golgi Membr...
B2

NTRK1 --> SHC3

C2- 3| 5HC3

T
3 SHC 2.3)




These results are a ready-to-use resource to study signaling in the cell. We compared these to
the two major signaling databases SPIKE and SignaLink. Please see the next section for the
information on how we parsed those databases. SPIKE contains 17686 directed relations, and
SignaLink contains 37564 directed relations that we could map participating entities to HGNC
symbols. Below diagram shows the intersection between these resources.

Pattern matches in
Pathway Commons SPIKE

SignaLink

SignaLink is dominated by inferred relations, while SPIKE and Pathway Commons only include
data from curated resources. That partly explains the very low overlap of SignaLink with others.
Our pattern search result covers about 17% of SPIKE relations, and it is larger in size. Also note
that none of the three example matches above are covered by SPIKE or SignaLink.

Here, we demonstrate that there is a lot to gain by mining patterns in detailed pathway models.
Searching this example pattern in Pathway Commons generates a resource that is as valuable
as other signaling databases, with many uniquely covered relations.

Parsing SPIKE and SignLink

We parsed XML data of SPIKE from http://www.cs.tau.ac.il/~spike/formats.html on July 19,
2013. We iterated over “Regulation” elements whose “Source” and “PhysicalTarget” properties
are mapped to “Gene” or “Group” elements. Regulation elements contain information of directed
relations. We parsed contents of the source and targets to get Entrez Gene IDs of the regulators
and targets, then mapped these to HGNC symbols.



http://www.google.com/url?q=http%3A%2F%2Fwww.cs.tau.ac.il%2F~spike%2Fformats.html&sa=D&sntz=1&usg=AFQjCNFbeFy2WUAU9byn-41Jv0neDLWXAA

We parsed SignaLink from http://signalink.org/download using the “complete database” option on
July 19, 2013. SignaLink provide their complete data as an SQL database. We used the following
SQL query to generate a file of directed binary relations between gene names:

select nll.name, n22.name

into outfile "/tmp/signalink.txt"

from names nl, names nll, names n2, names n22, interaction i
where i.is directed =1

and i.source = nl.id

and nl.protein id = nll.protein id

and nll.type="GN"

and i.target = n2.id

and n2.protein id = n22.protein_ id

and n22.type = "GN";

Genes have multiple names in the SignalLink database. We further filtered the query result by
selecting pairs that contain HGNC symbols as names for both proteins.

Pre-assigning elements of a pattern for a search

Pattern searches can be made more specific by pre-assigning some of the elements of the
pattern. The example below pre-assigns the homology entity representing activated ERK
proteins to the “controller PE” element of the sample pattern so that the search only retrieves
downstream of the activated ERK.

Pattern pattern = ...

Model model = ...

PhysicalEntity erk = (PhysicalEntity) model.getByID(

"http://pid.nci.nih.gov/biopaxpid_4936");

Match m = new Match(pattern.size());

m.set(erk, p.indexOf("controller PE"));

List<Match> result = Searcher.search(m, p);


http://www.google.com/url?q=http%3A%2F%2Fsignalink.org%2Fdownload&sa=D&sntz=1&usg=AFQjCNHP4JrZyVpZ8Jyylzwh2K5dl3corQ

Using BioPAX-pattern with minimal programming effort

BioPAX-pattern is designed primarily to be used as a library, however, it is also possible to use it
without any programming. The framework includes a GUI which lets users to select a predefined
pattern of interest, a resource model to search, and name of output file. The GUI can be
launched by directly executing the distributed jar file.

java -Xmx5G -jar biopax-pattern.jar

Note that the jar filename can be different to include the version of the release. Above call
launches the below dialog.

Pattern Miner

Source model

® Use Pathway Commons All-Human-Data |«

3 Use custom file

Pattern to search

Pattern: |in-same-complex -

Description

This pattern captures pairs of proteins that are members of the same
complex. Pattern allows multiple nesting of the members and use of
homologies.

Output file

: Run
in-same-complex. txt

This dialog also helps users to do minimum programming to search for a pattern that they
define. In the below example, we define a Miner object, which knows the pattern and how to

write the results to a text file. Then we use the same GUI to use this miner.

Miner miner = new MinerAdapter("name-of-the-pattern", "Description of the pattern™)

{

public Pattern constructPattern()

{
Pattern p = ...



public void writeResult(Map<BioPAXElement, List<Match>> matches,
OutputStream out) throws IOException

}s

Dialog d = new Dialog(miner);
d.setVisible(true);

Other software that process BioPAX

BioPAX-pattern is currently the only software that facilitates defining and searching patterns in a
BioPAX model. It uses Paxtools for reading BioPAX into memory.

Instead of using a dedicated software, generic RDF/OWL tools such as SPARQL and
OWL-Reasoners can also be used to search patterns in BioPAX. Although these tools can cover
some of the same use cases and also can be used for situations where BioPAX is used in
combination with other RDF data, they have two problems:

(i) Generic tools can not handle certain BioPAX semantics. During the development of
BioPAX, the community discovered limitations of OWL. As a result, not all of the biological
semantics were captured using the formal specification and were only mentioned in the
documentation. It is difficult and/or impossible to search for these using SPARQL or OWL
reasoners.

An example pattern is finding reactions that are “entity-balanced for proteins”, where for
each protein participant on the left side there is a corresponding protein on the right side that
belong to the same ProteinReference. This is an important question for finding curation errors
and separating degradation and translation events from other protein modification events. This
matching is further complicated by stoichiometry, complexes and generics. For example,
consider a reaction where a homotrimer protein complex, upon phosphorylation of one of its
components, disassociates into a phosphorylated monomer and a homodimer complex. This
reaction is still considered entity-balanced. It is not possible, however, to define satisfiability of
such bijective functions as constraints in SPARQL or any OWL reasoner that we are aware of. It
is possible to define them as pattern constraints in our framework.

(i) Paxtools is the most widely used library for developing software that processes
BioPAX. Using RDF/OWL tools together with Paxtools requires developers to load their model
into the memory as a separate instance or use a triple store in parallel to the Paxtools, run the
search in an external tool, and then retrieve the subnetworks and load them back to Paxtools.

7



This process can be prohibitively slow, especially for large models.

Below, we list other software that can process BioPAX.

Paxtools: Java library for reading and writing BioPAX. The core module provides a Java object
model, accessor methods, and a hibernate binding. The library contains various modules for
different tasks, such as graph theoretic-querying module, BioPAX to SBGN-ML conversion
module, PSI-MI to BioPAX conversion module, BioPAX to gene set conversion module, and
binary interaction module.

BioPAX Validator: BioPAX Level 3 data validation. Uses a community-defined set of rules

and best practices to detect errors and warnings in a BioPAx model. Uses Paxtools for reading
BioPAX.

ChiBE: Pathway visualization software for BioPAX models. Uses Paxtools to load a BioPAX
model, then creates a view similar to SBGN-PD.

Cytoscape: Pathway visualization tool. Includes a BioPAX reader.

BiNoM: A Cytoscape plugin for network analysis. Includes a reader and writer for BioPAX Level
3.

Systems Biology Linker (Sybil): An application that can visualize BioPAX and convert it to
SBML. This application is a part of the Virtual Cell environment.

rBiopaxParser: A tool for parsing, viewing and modifying BioPAX pathway data within the R
environment.

A more comprehensive and dynamic list of BioPAX software can be found at:
http://sourceforge.net/apps/mediawiki/biopax/index.php?title=Biological software supporting Bio
PAX



https://www.google.com/url?q=https%3A%2F%2Fsourceforge.net%2Fapps%2Fmediawiki%2Fbiopax%2Findex.php%3Ftitle%3DBiological_software_supporting_BioPAX&sa=D&sntz=1&usg=AFQjCNG5A-Ch0zYDMF6jiqBLL8sZ5xZPyw
https://www.google.com/url?q=https%3A%2F%2Fsourceforge.net%2Fapps%2Fmediawiki%2Fbiopax%2Findex.php%3Ftitle%3DBiological_software_supporting_BioPAX&sa=D&sntz=1&usg=AFQjCNG5A-Ch0zYDMF6jiqBLL8sZ5xZPyw

