
SeqPig: simple and scalable scripting for large
sequencing data sets in Hadoop

Supplementary material

1 Introduction

SeqPig is a library for Apache Pig http://pig.apache.org/ for the distributed analysis of large sequencing datasets
on Hadoop clusters. With SeqPig one can easily take advantage of the advanced high-level features of Pig to manipulate
and analyze sequencing data, thus writing simple scripts that automatically run as scalable distributed programs on
potentially very large Hadoop clusters.

SeqPig provides a number of features and functionalities. It provides import and export functions for file formats
commonly used in bioinformatics, as well as a collection of Pig user-defined-functions (UDF’s) specifically designed
for processing aligned and unaligned sequencing data. Currently SeqPig supports BAM, SAM, FastQ and Qseq input
and output and FASTA input, thanks in part to the functionality provided by the Hadoop-BAM library.

Releases of SeqPig come bundled with Picard/Samtools, which is developed at the Wellcome Trust Sanger Institute, and
Seal, which is developed at CRS4. For more details on these projects see their respective web sites, at http://picard.
sourceforge.net/, http://samtools.sourceforge.net/ and http://biodoop-seal.sourceforge.net/.

This supplementary material consists of three parts. The first part describes installation and dependencies, while the
second part discusses a number of example use cases and describes their implementation as SeqPig scripts. In the final
section we discuss some Hadoop and Pig parameters that may be changed for improvements in runtime and resource
utilization.

2 Installation

Since SeqPig builds on top of Pig, which itself relies on Hadoop for job execution, the installation requires a working
Pig and Hadoop setup. For more information in this direction see for example http://pig.apache.org/docs/r0.
11.1/start.html. A convenient way to install Hadoop is provided by the the Cloudera Hadoop distribution (CDH).

2.1 Dependencies

We have tested SeqPig with the following dependencies.

• Hadoop versions 0.20.2 or 1.0.4

• Pig (at least version 0.10)

The following two dependencies are already included in a pre-compiled SeqPig release:

• Hadoop-BAM (https://sourceforge.net/projects/hadoop-bam/)

• Seal (http://biodoop-seal.sourceforge.net/)

1

http://pig.apache.org/
http://picard.sourceforge.net/
http://picard.sourceforge.net/
http://samtools.sourceforge.net/
http://biodoop-seal.sourceforge.net/
http://pig.apache.org/docs/r0.11.1/start.html
http://pig.apache.org/docs/r0.11.1/start.html
https://sourceforge.net/projects/hadoop-bam/
http://biodoop-seal.sourceforge.net/

2.2 Environment variables

• Set Hadoop-related variables (e.g., HADOOP HOME) for your installation

• Set PIG HOME to point to your Pig installation

On a Cloudera Hadoop installation with Pig a suitable environment configuration would be:

$ export HADOOP_HOME=/usr/lib/hadoop
$ export PIG_HOME=/usr/lib/pig

2.3 Installing a pre-compiled release

1. Dowload the latest SeqPig release from http://sourceforge.net/projects/seqpig/files/:

$ wget http://sourceforge.net/projects/seqpig/files/seqpig_0.5.tar.gz

2. Untar the release into an installation directory of your choice and set the SEQPIG HOME environment variable to
point to the installation directory of SeqPig; e.g.,

$ tar xvzf seqpig_0.5.tar.gz -C /usr/local/java/
$ export SEQPIG_HOME=/usr/local/java/seqpig

3. For your convenience, you can add the bin directory to your PATH:

$ export PATH=${PATH}:${SEQPIG_HOME}/bin

This way, you’ll be able to start a SeqPig-enabled Pig shell by running the seqpig command.

Note that since the sources are included in the release you are also able to build SeqPig if necessary, as described
below.

2.4 Instructions for building SeqPig

1. Download Hadoop-BAM 5.1 from http://sourceforge.net/projects/hadoop-bam/files/.

$ wget http://sourceforge.net/projects/hadoop-bam/files/hadoop-bam-5.1.tar.gz
$ tar xvzf hadoop-bam-5.1.tar.gz
$ export HADOOP_BAM=`pwd`/hadoop-bam-5.1

2. Download and build the latest Seal git master version from http://biodoop-seal.sourceforge.net/. Note
that this requires setting HADOOP BAM to the installation directory of Hadoop-BAM, as done in the previous step.

$ git clone git://git.code.sf.net/p/biodoop-seal/code biodoop-seal-code

For more information on how to build Seal see http://biodoop-seal.sourceforge.net/installation.
html.

3. Clone the SeqPig repository.

$ git clone git://git.code.sf.net/p/seqpig/code seqpig-code

4. Inside the cloned SeqPig git repository create a lib/ subdirectory and copy (or link) the jar files from Hadoop-
BAM and Seal to this new directory. The files should be:

a) ${HADOOP_BAM}/*.jar

b) from the Seal directory, run find build/ -name seal.jar

Note: the Picard and Sam jar files are contained in the Hadoop-BAM release for convenience.

5. Run ant to build SeqPig.jar.

2

http://sourceforge.net/projects/seqpig/files/
http://sourceforge.net/projects/seqpig/files/seqpig_0.5.tar.gz
http://sourceforge.net/projects/hadoop-bam/files/
http://sourceforge.net/projects/hadoop-bam/files/hadoop-bam-5.1.tar.gz
http://biodoop-seal.sourceforge.net/
git://git.code.sf.net/p/biodoop-seal/code
http://biodoop-seal.sourceforge.net/installation.html
http://biodoop-seal.sourceforge.net/installation.html
git://git.code.sf.net/p/seqpig/code

Once you’ve built SeqPig, you can move the directory to a location of your preference (if on a shared system, perhaps
/usr/local/java/seqpig, else even your home directory could be fine).

2.4.1 Note

Some of the example scripts in this manual (e.g., Section 3.2.6) require functions from PiggyBank, which is a collection
of publicly available User-Defined Functions (UDF’s) that are distributed with Pig but may need to be built separately,
depending on your Pig distribution. For more details see https://cwiki.apache.org/confluence/display/PIG/
PiggyBank. Verify that PiggyBank has been compiled by looking for the file piggybank.jar under $PIG HOME:

$ find $PIG_HOME -name piggybank.jar

If PiggyBank hasn’t been compiled, go into $PIG HOME/contrib/piggybank/java and run ant.

2.5 Running on Amazon Elastic MapReduce

Assuming you have started an interactive Pig Job Flow (for example via the AWS console), you can login into the
master node and copy the SeqPig release to the Hadoop user home directory. Then set both SEQPIG HOME and PIG HOME
correctly (HADOOP HOME should be set by default). Note that the Pig version installed does not necessarily match the
latest Pig release. The advantage, however, is the ability to use S3 buckets for input and output.

Consider the following example for starting SeqPig on Amazon Elastic MapReduce. In this example we install SeqPig
into /home/hadoop/seqpig.

$ wget http://sourceforge.net/projects/seqpig/files/seqpig_0.5.tar.gz
$ tar -C /home/hadoop -xvzf seqpig_0.5.tar.gz
$ export SEQPIG_HOME=/home/hadoop/seqpig
$ export PIG_HOME=/home/hadoop/.versions/pig-0.9.2
$ /home/hadoop/seqpig/bin/seqpig

2.6 Tests

After building SeqPig it may be a good idea to run tests to verify that the environment has been set up correctly. When
inside the SeqPig directory execute

$ test/test_all.sh

By default the tests run Pig in local mode. In order to test Hadoop mode pass the command line argument -h. Note
that this test requires that Hadoop to be set up correctly. It first imports a BAM file, sorts the reads by coordinate and
converts it to SAM for comparing the results. The test should end with the line

TEST: all tests passed

If you intend to run SeqPig on an Amazon Elastic MapReduce instance, you can also test input from S3 by providing an
S3 path to the file data/input.bam:

$ test/test_all.sh -s <s3_path>

for example:

$ test/test_all.sh -s seqpig/data/input.bam

where seqpig is the name of the S3 bucket.

3

https://cwiki.apache.org/confluence/display/PIG/PiggyBank
https://cwiki.apache.org/confluence/display/PIG/PiggyBank
http://sourceforge.net/projects/seqpig/files/seqpig_0.5.tar.gz

2.7 Usage

2.7.1 Pig grunt shell for interactive operations

Assuming that all the environment variables have been set as described in the previous sections, you can start the SeqPig-
enabled “grunt” shell by running

$ seqpig

If you prefer to tun SeqPig in local mode (without Hadoop), which can be useful for debugging scripts, you can start it
by running

$ seqpig -x local

2.7.2 Starting scripts from the command line for non-interactive use

Alternatively to using the interactive Pig grunt shell, users can write scripts that are then submitted to Pig/Hadoop for
automated execution. This type of execution has the advantage of being able to handle parameters; for instance, one
can parametrize input and output files. See the /scripts directory inside the SeqPig distribution and Section 3 for
examples.

3 Examples

This section lists a number of examples of the types of operations that can be performed with SeqPig. Each example is
typically a mix of standard Pig operations and SeqPig user-defined functions (UDF’s). Note that once the data has been
imported to Pig the only difference between, say, read data originating from BAM and Fastq files, is that some fields in
tuples derived from BAM may not be available in those from Fastq, e.g., alignment start positions.

3.1 Operations on BAM files

To access sequencing data in BAM files, SeqPig uses Hadoop-BAM, which provides access to all fields and optional
attributes in the data records. All the examples below assume that an input BAM file is initially imported to HDFS via

$ prepareBamInput.sh input.bam

This additional setup step is required to extract the header and store it inside HDFS to simplify some operations that
only operate on a chunk of the BAM file without having access to the original header. Similarly, for uncompressed SAM
files there is a corresponding prepareSamInput.sh. Once the input file is imported into HDFS it can be loaded in the
grunt shell via

A = load 'input.bam' using BamLoader('yes');

The ’yes’ parameter to BamLoader chooses read attributes to be loaded; choose ’no’ whenever these are not required,
which is also the default value).

Once some operations have been performed, the resulting (possibly modified) read data can then be stored into a new
BAM file via

store A into 'output.bam' using BamStorer('input.bam.asciiheader');

and can also be exported from HDFS to the local filesystem via

prepareBamOutput.sh output.bam

Note The Pig store operation requires a valid header for the BAM output file, for example the header of the source file
used to generate it, which is generated automatically by the prepareBamInput.sh script used to import it).

4

3.1.1 Simple operations

Writing the BAM data to the screen (similarly to samtools view) can be done simply by

dump A;

Another very useful Pig command is describe, which returns the schema that Pig uses for a given data bag. Example:

A = load 'input.bam' using BamLoader('yes');
describe A;

returns

A: {name: chararray,start: int,end: int,read: chararray,cigar: chararray,
basequal: chararray,flags: int,insertsize: int,mapqual:int,matestart: int,
materefindex: int,refindex: int,refname: chararray,attributes: map[]}

Notice that all fields except the attributes are standard data types (strings or integers). Specific attributes can be accessed
via attributes#’name’. For example,

B = FOREACH A GENERATE name, attributes#'MD';
dump B;

will output all read names and their corresponding MD tag. Other useful commands are LIMIT and SAMPLE, which can
be used to select a subset of reads from a BAM/SAM file.

B = LIMIT A 20;

will assign the first 20 records of A to B, while

B = SAMPLE A 0.01;

will sample from A with sampling probability 0.01.

3.1.2 Filtering out unmapped reads and PCR or optical duplicates

Since the flags field of a SAM record is exposed to Pig, one can simply use it to filter out all tuples (i.e., SAM records)
that do not have the corresponding bit set.

A = FILTER A BY (flags/4)%2==0 and (flags/1024)%2==0;

For convenience SeqPig provides a set of filters that allow a direct access to the relevant fields. The previous example is
equivalent to

run scripts/filter_defs.pig
A = FILTER A BY not ReadUnmapped(flags) and not IsDuplicate(flags);

Note that the above example assumes that the Pig shell was started in the SeqPig root directory. If this is not the case,
you need to adjust the path to filter defs.pig accordingly. For of a full list of the available filters look at this file.

3.1.3 Filtering out reads with low mapping quality

Other fields can also be used for filtering, for example the read mapping quality value as shown below.

A = FILTER A BY mapqual > 19;

5

3.1.4 Filtering by regions (samtools syntax)

SeqPig also supports filtering by samtools region syntax. The following examples selects base positions 1 to 44350673
of chromosome 20.

DEFINE myFilter CoordinateFilter('input.bam.asciiheader','20:1-44350673');
A = FILTER A BY myFilter(refindex,start,end);

Note that filtering by regions requires a valid SAM header for mapping sequence names to sequence indices. This file is
generated automatically when BAM files are imported via the prepareBamInput.sh script.

3.1.5 Sorting BAM files

Sorting an input BAM file by chromosome, reference start coordinate, strand and readname (in this hierarchical order):

A = FOREACH A GENERATE name, start, end, read, cigar, basequal, flags, insertsize,
mapqual, matestart, materefindex, refindex, refname, attributes, (flags/16)%2 AS strand;
A = ORDER A BY refname, start, strand, name;

Note that strand here is used to refer to the strand flag computed by the expression (flags/16)%2.

Note This is roughly equivalent to executing from the command line:

$ seqpig -param inputfile=input.bam -param outputfile=input_sorted.bam \
${SEQPIG_HOME}/scripts/sort_bam.pig

3.1.6 Computing read coverage

Computing read coverage over reference-coordinate bins of a fixed size, for example:

B = GROUP A BY start/200;
C = FOREACH B GENERATE group, COUNT(A);
dump C;

will output the number of reads that lie in any non-overlapping bin of size 200 base pairs. For a more precise coverage
computation see Section 3.1.8 on computing read pileup.

3.1.7 Computing base frequencies (counts) for each reference coordinate

run scripts/filter_defs.pig
A = FOREACH A GENERATE read, flags, refname, start, cigar, basequal, mapqual;
A = FILTER A BY not ReadUnmapped(flags);
RefPos = FOREACH A GENERATE ReadRefPositions(read, flags, refname, start, cigar, basequal),

mapqual;
flatset = FOREACH RefPos GENERATE flatten($0), mapqual;
grouped = GROUP flatset BY ($0, $1, $2);
base_counts = FOREACH grouped GENERATE group.chr, group.pos, group.base, COUNT(flatset);
base_counts = ORDER base_counts BY chr,pos;
store base_counts into 'input.basecounts';

Note This is roughly equivalent to executing from the command line:

$ seqpig -param inputfile=input.bam -param outputfile=input.basecounts \
-param pparallel=1 ${SEQPIG_HOME}/scripts/basefreq.pig

6

3.1.8 Pileup

Generating samtools compatible pileup (for a correctly sorted BAM file with MD tags aligned to the same reference,
should produce the same output as samtools mpileup -A -f ref.fasta -B input.bam):

run scripts/filter_defs.pig
A = load 'input.bam' using BamLoader('yes');
B = FILTER A BY not ReadUnmapped(flags) and not IsDuplicate(flags);
C = FOREACH B GENERATE ReadPileup(read, flags, refname, start, cigar,

basequal, attributes#'MD', mapqual), start, flags, name;
C = FILTER C BY $0 is not null;
D = FOREACH C GENERATE flatten($0), start, flags, name;
E = GROUP D BY (chr, pos);
F = FOREACH E {
G = FOREACH D GENERATE refbase, pileup, qual, start, (flags/16)%2, name;
G = ORDER G BY start, $4, name;
GENERATE group.chr, group.pos, PileupOutputFormatting(G, group.pos);

}
G = ORDER F BY chr, pos;
H = FOREACH G GENERATE chr, pos, flatten($2);
store H into 'input.pileup' using PigStorage('\t');

Note This is equivalent to executing from the command line:

$ seqpig -param inputfile=input.bam -param outputfile=input.pileup -param pparallel=1 \
${SEQPIG_HOME}/scripts/pileup.pig

The script essentially does the following:

1. Import BAM file and filter out unmapped or duplicate reads (A, B)

2. Break up each read and produce per-base pileup output (C, D)

3. Group all thus generated pileup output based on a (chromosome, position) coordinate system (E)

4. For each of the groups, sort its elements by their position, strand and name; then format the output according to
samtools (F)

5. Sort the final output again by (chromosome, position) and flatten it to un-nest the tuples (G, H)

6. Store the output to a directory inside HDFS (last line)

There are two optional parameters for pileup.pig: min map qual and min base qual (both with default value 0) that
filter out reads with either insufficient map quality or base qualities. Their values can be set the same way as the other
parameters above.

There is an alternative pileup script which typically performs better but is more sensitive to additional parameters. This
second script, pileup2.pig, is based on a binning of the reads according to intervals on the reference sequence. The
pileup output is then generated on a by-bin level and not on a by-position level. This script can be invoked with the same
parameters as pileup2.pig. However, it has tunable parameters that determine the size of the bins (binsize) and the
maximum number of reads considered per bin (reads cutoff), which is similar to the maximum depth parameter that
samtools accepts. However, note that since this parameter is set on a per-bin level you may choose it dependent on the
read length and bin size, as well as the amount of memory available on the compute nodes.

7

3.1.9 Collecting read-mapping-quality statistics

In order to evaluate the output of an aligner, it may be useful to consider the distribution of the mapping quality over the
collection of reads. Thanks to Pig’s GROUP operator this is fairly easy.

run scripts/filter_defs.pig
A = load 'input.bam' using BamLoader('yes');
B = FILTER A BY not ReadUnmapped(flags) and not IsDuplicate(flags);
read_stats_data = FOREACH B GENERATE mapqual;
read_stats_grouped = GROUP read_stats_data BY mapqual;
read_stats = FOREACH read_stats_grouped GENERATE group, COUNT($1);
read_stats = ORDER read_stats BY group;
STORE read_stats into 'mapqual_dist.txt';

Note This is equivalent to executing from the command line:

$ seqpig -param inputfile=input.bam -param outputfile=mapqual_dist.txt \
${SEQPIG_HOME}/scripts/read_stats.pig

3.1.10 Collecting per-base statistics of reads

Sometimes it may be useful to analyze a given set of reads for a bias towards certain bases being called at certain
positions inside the read. The following simple script generates for each reference base and each position inside a read
the distribution of the number of read bases that were called.

run scripts/filter_defs.pig
A = load 'input.bam' using BamLoader('yes');
B = FILTER A BY not ReadUnmapped(flags) and not IsDuplicate(flags);
C = FOREACH B GENERATE ReadSplit(name,start,read,cigar,basequal,flags,mapqual,refindex,

refname,attributes#'MD');
D = FOREACH C GENERATE FLATTEN($0);
base_stats_data = FOREACH D GENERATE refbase, basepos, UPPER(readbase) AS readbase;
base_stats_grouped = GROUP base_stats_data BY (refbase, basepos, readbase);
base_stats_grouped_count = FOREACH base_stats_grouped GENERATE group.$0 AS refbase, group.$1

AS basepos, group.$2 as readbase, COUNT($1) AS bcount;
base_stats_grouped = GROUP base_stats_grouped_count by (refbase, basepos);
base_stats = FOREACH base_stats_grouped {

TMP1 = FOREACH base_stats_grouped_count GENERATE readbase, bcount;
TMP2 = ORDER TMP1 BY bcount desc;
GENERATE group.$0, group.$1, TMP2;

}
STORE base_stats into 'outputfile_readstats.txt';

Here is an example output (for a BAM file with 50 reads):

A 0 {(A,19),(G,2)}
A 1 {(A,10)}
A 2 {(A,18)}
A 3 {(A,16)}
A 4 {(A,14)}
A 5 {(A,15)}
A 6 {(A,16),(G,2)}
...
A 98 {(A,7)}
A 99 {(A,14)}
C 0 {(C,6)}
C 1 {(C,11)}

8

C 2 {(C,9)}
...

Note This example script is equivalent to executing from the command line:

$ seqpig -param inputfile=input.bam -param outputfile=outputfile_readstats.txt \
$SEQPIG_HOME/scripts/basequal_stats.pig

3.1.11 Collecting per-base statistics of base qualities for reads

Analogously to the previous example collecting statistics for the read bases, we can also collect frequencies for base
qualities conditioned on the position of the base inside the reads. If these fall off too quickly for later positions, it may
indicate some quality issues with the run. The resulting script is actually fairly similar to the previous one with the
difference of not grouping over the reference bases.

run scripts/filter_defs.pig
A = load 'input.bam' using BamLoader('yes');
B = FILTER A BY not ReadUnmapped(flags) and not IsDuplicate(flags);
C = FOREACH B GENERATE ReadSplit(name,start,read,cigar,basequal,flags,mapqual,refindex,

refname,attributes#'MD');
D = FOREACH C GENERATE FLATTEN($0);
base_stats_data = FOREACH D GENERATE basepos, basequal;
base_stats_grouped = GROUP base_stats_data BY (basepos, basequal);
base_stats_grouped_count = FOREACH base_stats_grouped GENERATE group.$0 as basepos, group.$1

AS basequal, COUNT($1) AS qcount;
base_stats_grouped = GROUP base_stats_grouped_count BY basepos;
base_stats = FOREACH base_stats_grouped {

TMP1 = FOREACH base_stats_grouped_count GENERATE basequal, qcount;
TMP2 = ORDER TMP1 BY basequal;
GENERATE group, TMP2;

}
STORE base_stats into 'outputfile_basequalstats.txt';

Here is an example output (for a BAM file with 50 reads):

0 {(37,10),(42,1),(51,20),(52,1),(59,1),(61,1),(62,1),(67,2),(68,2),(70,2),(71,4),(72,3)
,(73,1),(75,2)}

1 {(53,1),(56,1),(61,1),(63,1),(64,1),(65,2),(67,4),(68,3),(69,2),(70,7),(71,3),(72,3)
,(73,1),(74,4),(75,2),(76,5),(77,6),(78,2),(80,1)}

2 {(45,1),(46,1),(51,2),(57,1),(61,1),(65,2),(66,3),(67,2),(69,3),(71,4),(72,2),(73,6)
,(74,7),(75,1),(76,8),(77,2),(78,3),(80,1)}

3 {(58,1),(59,1),(60,1),(61,1),(62,1),(64,1),(65,2),(67,2),(68,1),(69,5),(70,1),(71,3)
,(72,7),(73,2),(74,4),(75,6),(76,2),(77,4),(78,3),(79,1),(81,1)}

4 {(55,1),(60,1),(61,1),(62,1),(64,1),(66,1),(67,3),(68,2),(69,1),(70,7),(71,2),(72,1)
,(73,4),(74,2),(75,2),(76,2),(77,2),(78,3),(79,7),(80,4),(81,2)}

5 {(51,1),(52,2),(54,1),(58,2),(62,2),(63,1),(66,3),(68,4),(70,1),(71,1),(72,2),(73,3)
,(74,1),(75,8),(76,1),(77,5),(78,1),(79,6),(80,3),(81,3)}

...

Note This example script is equivalent to executing from the command line:

$ seqpig -param inputfile=input.bam -param outputfile=outputfile_basequalstats.txt \
$SEQPIG_HOME/scripts/basequal_stats.pig

9

3.1.12 Filtering reads by mappability threshold

The script filter mappability.pig filters reads in a given BAM file based on a given mappability threshold. Both
input BAM and mappability file need to reside inside HDFS.

$ seqpig -param inputfile=/user/hadoop/input.bam -param outputfile=/user/hadoop/output.bam \
-param regionfile=/user/hadoop/mappability.100kbp.txt -param threshold=90 \
$SEQPIG_HOME/scripts/filter_mappability.pig

Note that since the script relies on distributing the BAM file header and the mappability file via Hadoop’s distributed
cache, it is not possible to run it with Pig in local mode.

3.2 Processing Qseq and Fastq data

SeqPig supports the import and export of non-aligned reads stored in Qseq and Fastq data. Due to Pig’s model that
all records correspond to tuples, which form bags, reads can be processed in very much the same way independent of,
for example, whether they are stored in Qseq or Fastq. Also, since Fastq and Qseq files are header-less, there is no
pre-processing step required prior to loading the files, compared to SAM/BAM import.

3.2.1 Converting Qseq to Fastq and vice versa

The following two lines simply convert an input Qseq file into Fastq format.

reads = load 'input.qseq' using QseqLoader();
STORE reads INTO 'output.fastq' using FastqStorer();

The other direction works analogously.

The following examples are not specific to the type of input data (Fastq, Qseq, BAM, . . .). They roughly correspond to
the ones computed by the popular FastQC tool and can be all found in the fast fastqc.pig script.

3.2.2 Computing a read length distribution

Once a read set is imported, it is fairly straightforward to compute simple statistics, such as a histogram of the length of
reads. Using the LENGTH string function, which is part of the PiggyBank (see Section 2.4.1), we can first compute the
set of read lengths, group them by their value and then compute the size of each of the groups.

DEFINE LENGTH org.apache.pig.piggybank.evaluation.string.LENGTH();
reads = load 'input.fq' using FastqLoader();
read_len = FOREACH reads GENERATE LENGTH(sequence);
read_len_counts = FOREACH (GROUP read_len BY $0) GENERATE group AS len, COUNT_STAR($1) as

count;

3.2.3 Computing a distribution of the average base quality of a read

By using a SeqPig UDF to split reads into bases, one can compute this statistic by relying on Pig’s GROUP BY operator
as follows.

reads = load 'input.fq' using FastqLoader();
reads_by_bases = FOREACH reads GENERATE UnalignedReadSplit(sequence, quality);
read_q = FOREACH reads_by_bases GENERATE ROUND(AVG($0.basequal)) as read_qual;
read_q_counts = FOREACH (GROUP read_q BY read_qual) GENERATE group as avg_read_qual,

COUNT_STAR($1) as count;

Alternatively, SeqPig also provides another UDF that has better performance for larger read sets.

10

reads = load 'input.fq' using FastqLoader();
read_seq_qual = FOREACH reads GENERATE quality;
avgbase_qual_counts = FOREACH (GROUP read_seq_qual ALL) GENERATE AvgBaseQualCounts($1.$0);
formatted_avgbase_qual_counts = FOREACH avgbase_qual_counts GENERATE

FormatAvgBaseQualCounts($0);

3.2.4 Distribution of GC content over the read set

The following example shows how one can exploit Pig’s GROUP and COUNT operators to obtain statistics of the
composition of read bases.

reads = load 'input.fq' using FastqLoader();
reads_by_bases = FOREACH reads GENERATE UnalignedReadSplit(sequence, quality);
read_gc = FOREACH reads_by_bases {
only_gc = FILTER $0 BY readbase == 'G' OR readbase == 'C';
GENERATE COUNT(only_gc) as count;

}
read_gc_counts = FOREACH (GROUP read_gc BY count) GENERATE group as gc_count, COUNT_STAR($1)

as count;

3.2.5 Computing base statistics over the read set

Similarly to GC content, one can rely on Pig operations to compute for each read position the distribution of nucleotides
and their base qualities, as given by the aligner. However, in order to improve performance for larger data sets, SeqPig
also provides UDF’s for this purpose.

reads = load 'input.fq' using FastqLoader();
read_seq_qual = FOREACH reads GENERATE sequence, quality;
base_qual_counts = FOREACH (GROUP read_seq_qual ALL) GENERATE BaseCounts($1.$0),

BaseQualCounts($1.$1);
formatted_base_qual_counts = FOREACH base_qual_counts GENERATE FormatBaseCounts($0),

FormatBaseQualCounts($1);
base_gc_counts = FOREACH base_qual_counts GENERATE FormatGCCounts($0);

Note All the statistics computed by the examples of Sections 3.2.2–3.2.5 can be executed at once via

$ seqpig -param inputpath=input.fq -param outputpath=fast-fastqc-output \
$SEQPIG_HOME/scripts/fast_fastqc.pig

3.2.6 Clipping bases and base qualities

Assuming there were some problems in certain cycles of the sequencer, it may be useful to clip bases from reads. This
example removes the last 3 bases and their qualities and stores the data under a new filename. Note that here we rely on
the SUBSTRING and LENGTH string functions, which are part of the PiggyBank (see Section 2.4.1).

DEFINE SUBSTRING org.apache.pig.piggybank.evaluation.string.SUBSTRING();
DEFINE LENGTH org.apache.pig.piggybank.evaluation.string.LENGTH();
reads = load 'input.qseq' using QseqLoader();
B = FOREACH A GENERATE instrument, run_number, flow_cell_id, lane, tile, xpos, ypos, read,

qc_passed, control_number, index_sequence, SUBSTRING(sequence, 0, LENGTH(sequence) - 3)
AS sequence, SUBSTRING(quality, 0, LENGTH(quality) - 3) AS quality;

store B into 'output.qseq' using QseqStorer();

Note This example script is equivalent to executing from the command line:

11

$ seqpig -param inputfile=input.qseq -param outputfile=output.qseq -param backclip=3 \
$SEQPIG_HOME/scripts/clip_reads.pig

4 Performance tuning

4.1 Pig parameters

Recent releases of Pig (such as 0.11.0) have a parameter that enables aggregation of partial results on the mapper side,
which greatly improves performances of some of the UDF’s described above. Further, another option that is worth
considering is to use so-called schema tuples. For more information see the Pig documentation. The recommended
setting is as follows:

• set pig.exec.mapPartAgg true;

• set pig.exec.mapPartAgg.minReduction 5;

• set pig.schematuple on;

4.2 Hadoop parameters

Some scripts (such as pileup2.pig) require an amount of memory that depends on the choice of command line pa-
rameters. To tune the performance of such operations on the Hadoop cluster, consider the following Hadoop-specific
parameters in mapred-site.xml.

• mapred.tasktracker.map.tasks.maximum:
the maximum number simultaneous map tasks per worker node

• mapred.tasktracker.reduce.tasks.maximum:
the maximum number simultaneous reducer tasks per worker node

• mapred.child.java.opts:
Java options passed to child virtual machines at the worker nodes; for instanced, this may be used to configure the
Java heap size to 1GB with -Xmx1000M

Additionally, it is possible to pass command line parameters (such as mapper and reducer memory limits). For instance,
consider the Pig invocation (see tools/tun all pileup2.sh)

${PIG_HOME}/bin/pig -Dpig.additional.jars=${SEQPIG_HOME}/lib/hadoop-bam-5.0.jar:${SEQPIG_HOME
}/build/jar/SeqPig.jar:${SEQPIG_HOME}/lib/seal.jar:${SEQPIG_HOME}/lib/picard-1.76.jar:${
SEQPIG_HOME}/lib/sam-1.76.jar -Dmapred.job.map.memory.mb=${MAP_MEMORY} -Dmapred.job.
reduce.memory.mb=${REDUCE_MEMORY} -Dmapred.child.java.opts=-Xmx${CHILD_MEMORY}M -Dudf.
import.list=fi.aalto.seqpig -param inputfile=$INPUTFILE -param outputfile=$OUTPUTFILE -
param pparallel=${REDUCE_SLOTS} ${SEQPIG_HOME}/scripts/pileup2.pig

By setting appropriate values for MAP MEMORY, REDUCE MEMORY, CHILD MEMORY and for the number of available reduce
slots REDUCE SLOTS one may be able to improve performance.

4.3 Compression

For optimal performance and space usage it may be advisable to enable the compression of Hadoop map (and possibly
reduce) output, as well as temporary data generated by Pig. Compression with Pig can be enabled by setting properties
such as

-Djava.library.path=/opt/hadoopgpl/native/Linux-amd64-64
-Dpig.tmpfilecompression=true -Dpig.tmpfilecompression.codec=lzo
-Dmapred.output.compress=true
-Dmapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec

12

on the Pig command line or the Hadoop configuration. Note that currently not all Hadoop compression codecs are
supported by Pig. The details regarding which compression codec to use depend are beyond the scope of this manual.

5 UDF reference guide

The aim of this section is to give a brief overview of the available UDF’s that come with SeqPig, their input and output
schemas and their operation. For more detailed information please consult the source code. Note that some of the usage
examples that process BAM files assume that unmapped reads or reads that do not have a valid MD tag have been filtered
out (for filters see below).

5.1 seqpig

5.1.1 UnalignedReadSplit

The UnalignedReadSplit UDF takes a bag of reads (read in by the Fastq or Qseq loaders) and splits them into tuples that
correspond to the single bases of each read.

Usage:
reads = load 'input.fq' using FastqLoader();
reads_by_bases = FOREACH reads GENERATE UnalignedReadSplit(sequence, quality);

Field Type Description

Input schema: read chararray read bases (sequence)
basequal chararray base qualities

Output schema:
(bag)

pos integer position in read

readbase chararray read base
basequal integer base quality

5.1.2 ReadRefPositions

The ReadRefPositions UDF takes an aligned read and outputs a bag of tuples, one for each base, that gives the position
on the reference sequence this base corresponds to.

Usage:
reads = load 'input.bam' using BamLoader('yes');
ref_positions = FOREACH reads GENERATE ReadRefPositions(read, flags, refname,

start, cigar, basequal);

Field Type Description

Input schema:

read chararray read bases (sequence)
flags integer SAM flags
chr chararray reference name / chromosome
position integer mapping position (start)
cigar chararray CIGAR string
basequal chararray base qualities

Output schema:
(bag)

chr chararray reference name / chromosome
pos integer position (on reference)
base chararray read base
basequal chararray base quality

13

5.1.3 ReadSplit

Similarly to the previous UDF, ReadSplit determines the reference position that a particular base inside a read refers to.
Additionally, it also tries to determine the base on the reference in questions by parsing the MD tag (and CIGAR).

Usage:
reads = load 'input.bam' using BamLoader('yes');
bases = FOREACH reads GENERATE ReadSplit(name,start,read,cigar,basequal,flags,

mapqual,refindex,refname,attributes#'MD');

Field Type Description

Input schema:

readname chararray read name
start integer mapping position (start)
read chararray read bases (sequence)
cigar chararray CIGAR string
basequal chararray base qualities
flags integer SAM flags
mapqual integer mapping quality
refindex integer reference index (see BAM/SAM loader)
chr chararray reference name / chromosome (see BAM/SAM loader)
MD chararray MD tag

Output schema:
(bag)

chr chararray reference name / chromosome
pos integer position (on reference)
refbase chararray base on reference (if known, else null)
readname chararray read name
readlength integer read length (possibly clipped)
mapqual integer mapping quality
flags integer SAM flags
basepos integer position in read
readbase chararray base on read
basequal chararray base quality (if applicable, else null)

5.1.4 ReverseComplement

The ReverseComplement UDF takes a read base sequence and returns its reverse complement.

Usage:
reads = load 'input.fq' using FastqLoader();
reversed_reads = FOREACH reads GENERATE ReverseComplement(sequence);

Field Type Description
Input schema: read chararray read bases (sequence)
Output schema: reversed read chararray read bases (reverse-complemented)

5.2 seqpig.io

This package contains import and export functions for the various file formats that are supported. In the case of BAM
and SAM files, the file formats make use of all the fields that are available for a Picard sequence record (SAMRecord).

5.2.1 BamLoader and SamLoader

The BAM and SAM loader output schemas are identical and both loaders take an optional argument that can take values
“yes” and “no”, indicating whether the map of attributes should be populated. Reading in attributes incurs an additional
overhead during the import of the data, so choose “no” whenever these are not needed. For a proper definition of the
various fields see the SAM file format description available at http://samtools.sourceforge.net/SAMv1.pdf.

14

http://samtools.sourceforge.net/SAMv1.pdf

Usage: reads = load 'input.bam' using BamLoader('yes');

Output schema:

Field Type Description
name chararray read name
start integer start position of alignment
end integer end position of alignment
read chararray read bases
cigar chararray CIGAR string
basequal chararray base qualities
flags integer flags
insertsize integer insert size
mapqual integer mapping quality
matestart integer mate start position
materefindex integer mate reference index
refindex integer reference index
refname chararray reference name
attributes map SAMRecord attributes

5.2.2 BamStorer and SamStorer

The BAM and SAM storer input schemas are identical and both are essentially equal to the output schema of the
corresponding loader functions. Note that the order of the fields inside tuples does not matter, only their field names
need to be present. Both loaders require, however, the name of a file that contains a valid SAM header. For details see
Section 3.1.

Usage: store reads into 'output.bam' using BamStorer('input.bam.asciiheader');

Input schema:

Field Type Description
name chararray read name
start integer start position of alignment
end integer end position of alignment
read chararray read bases
cigar chararray CIGAR string
basequal chararray base qualities
flags integer flags
insertsize integer insert size
mapqual integer mapping quality
matestart integer mate start position
materefindex integer mate reference index
refindex integer reference index
refname chararray reference name
attributes map SAMRecord attributes

5.2.3 FastqLoader and QseqLoader

Both loaders for unaligned read file formats Fastq and Qseq essentially provide the same output schema for the tuple
field names they produce. Note that some fields that are not present in the input data may remain empty.

15

Usage: reads = load 'input.fq' using FastqLoader();

Output schema:

Field Type Description
instrument chararray instrument identifier
run number integer run number
flow cell id chararray flow cell ID
lane integer lane number
tile integer tile
xpos integer XPos
ypos integer YPos
read integer read ID
qc passed Boolean QC flag
control number integer control number
index sequence chararray index sequence
sequence chararray read bases
quality chararray base qualities

5.2.4 FastqStorer and QseqStorer

The Fastq and Qseq storer input schemas are identical and both are essentially equal to the output schema of the corre-
sponding loader functions. Note that the order of the fields inside tuples does not matter, only their field names need to
be present. All fields except sequence and quality are optional.

Usage: store reads into 'output.fastq' using FastqStorer();

Input schema:

Field Type Description
instrument chararray instrument identifier
run number integer run number
flow cell id chararray flow cell ID
lane integer lane number
tile integer tile
xpos integer XPos
ypos integer YPos
read integer read ID
qc passed Boolean QC flag
control number integer control number
index sequence chararray index sequence
sequence chararray read bases
quality chararray base qualities

5.2.5 FastaLoader

The FastaLoader loads reference sequence data in FASTA format and produces tuples that correspond to segments of
the reference. These tuples could then be, for example, co-grouped with tuples that result from an imported BAM file of
reads aligned to a matching reference sequence in order to compare read with reference bases. For more information on
the FASTA format see http://en.wikipedia.org/wiki/FASTA_format.

Usage: reference_bases = load 'hg19.fa' using FastaLoader();

Output schema:

Field Type Description
index sequence chararray name of reference fragment (e.g., chromX)
start integer 1-based start position of current reference fragment
sequence chararray reference bases

16

http://en.wikipedia.org/wiki/FASTA_format

5.3 seqpig.filter

This module contains various functions that implement Apache Pig’s filter UDF interface.

5.3.1 CoordinateFilter

The CoordinateFilter filters aligned reads by Samtools regions. See also Section 3.1.4. Note that this filter requires a
SAM file header to operate, which can be extracted for example by running prepareBamInput.sh script when uploading
a BAM file to HDFS.

Usage:
DEFINE myFilter CoordinateFilter('input.bam.asciiheader','20:1-44350673');
reads = load 'input.bam' using BamLoader('yes');
reads = FILTER reads BY myFilter(refindex,start,end);

Input schema:

Field Type Description
refindex integer reference sequence index
start integer start position
end integer end position

5.3.2 SAMFlagsFilter

SAMFlagsFilter is a filter that uses SAM flags for filtering. For more example of filtering by SAM flags see Section 3.1.2.
Also note the pre-defined set of filters that can be activated by running run scripts/filter defs.pig from within
the SeqPig main directory.

Usage:
DEFINE ReadUnmapped SAMFlagsFilter('HasSegmentUnmapped');
reads = load 'input.bam' using BamLoader('yes');
mapped_reads = FILTER reads BY not ReadUnmapped(flags);

Input schema: Field Type Description
flags integer SAM flags of read

5.3.3 BaseFilter

The BaseFilter is not actually a filter UDF in the Pig sense. Instead, it scans the given set of 2-tuples, consisting of read
bases and their base qualities, and replaces all bases that have quality values below a given threshold by “N”.

Usage:

DEFINE baseFilter BaseFilter('50');
reads = LOAD 'input.fq' USING FastqLoader();
reads_filtered = FOREACH reads GENERATE instrument, run_number, flow_cell_id,

lane, tile, xpos, ypos, read, qc_passed, control_number, index_sequence,
FLATTEN(baseFilter(sequence, quality));

Input schema:
Field Type Description
sequence chararray read bases
quality integer base qualities

5.4 seqpig.stats

This package contains some UDF’s that aim to provide FastQC like statistics for sequence data. They rely on an
optimized counter class that maintains counters for discrete range variables (nucleotides, base qualities, etc.) that can
be expressed as pairs. For example, one may be interested in counting the number of times base quality 30 appears at
position 10 within a given set of reads. This type of counter implements interfaces of Apache Pig that, among other
things, allow for in-memory map side aggregation of subresults, which leads to significant runtime improvements due

17

to a reduction in memory allocation overhead. This optimization comes at the expense of fixing the set of possible
values that can be observed (bases, base qualities) and the number of position in question (the readlength). In the rest
of the section we therefore assume a given upper bound on the readlength, which we denote by READLENGTH. For
implementation details of the counter see ItemCounter2D.java.

5.4.1 BaseCounts

The BaseCounts UDF relies on the aforementioned counter class to provide a histogram of the occurrences of each of
the five base identifiers (’A’, ’C’, ’G’, ’T’ and ’N’) over the given set of reads. Note that the output consists of an array
of Java long values that are encoded inside a byte array. For convenience one should call the UDF FormatQualCounts to
unpack the byte arrays and obtain the original counter values.

Usage:

reads = LOAD 'input.fq' USING FastqLoader();
read_seqs = FOREACH reads GENERATE sequence;
base_counts = FOREACH (GROUP read_seqs ALL) GENERATE BaseCounts($1);
formatted_base_counts = FOREACH base_counts GENERATE FormatBaseCounts($0);

Field Type Description
Input schema: arbitrary chararray bases
Output schema: long array NxM bytearray counter values encoded as bytes (N=5 and M is equal to

READLENGTH)

5.4.2 FormatBaseCounts

FormatBaseCounts takes the output of BaseCounts and extracts its counter values. For a complete example see above or
script scripts/fast fastqc.pig.

Usage:
base_counts = FOREACH (GROUP read_seqs ALL) GENERATE BaseCounts($1);
formatted_base_counts = FOREACH base_counts GENERATE FormatBaseCounts($0);

Field Type Description
Input schema: long array NxM bytearray counter values encoded as bytes (N=5 and M is equal to

READLENGTH)
Output schema:
(bag)

pos integer position (ranging from 0 to READLENGTH-1)
count1. . .countN double fraction of reads having this base at the given position

5.4.3 FormatGCCounts

FormatGCCounts operates similarly to FormatBaseCounts in the sense that it takes the output of BaseCounts and extracts
its counter values. Instead of considering all possible bases (including ’N’), it instead only considers the GC content at
each position of the reads.

Usage:

reads = LOAD 'input.fq' USING FastqLoader();
read_seqs = FOREACH reads GENERATE sequence;
base_counts = FOREACH (GROUP read_seqs ALL) GENERATE BaseCounts($1);
formatted_gc_counts = FOREACH base_counts GENERATE FormatGCCounts($0);

Field Type Description
Input schema: long array NxM bytearray counter values encoded as bytes (N=5 and M is equal to

READLENGTH)
Output schema:
(bag)

pos integer position (ranging from 0 to READLENGTH-1)
GC double fraction of reads having ’G’ or ’C’ at this position

18

5.4.4 AvgBaseQualCounts

The AvgBaseQualCounts UDF relies on the aforementioned counter class to provide a histogram of the average base
quality (rounded to next integer) over the given set of reads (average taken over the positions within the read). Note that
the output consists of an array of Java long values that are encoded inside a byte array. For convenience one should call
the UDF FormatAvgBaseQualCounts to unpack the byte arrays and obtain the original counter values.

Usage:

reads = LOAD 'input.fq' USING FastqLoader();
read_seq_qual = FOREACH reads GENERATE quality;
avgbase_qual_counts = FOREACH (GROUP read_seq_qual ALL) GENERATE

AvgBaseQualCounts($1.$0);
formatted_avgbase_qual_counts = FOREACH avgbase_qual_counts GENERATE

FormatAvgBaseQualCounts($0);

Field Type Description
Input schema: arbitrary chararray base qualities
Output schema: long array NxM bytearray counter values encoded as bytes (N is the number of differ-

ent quality values and M is 1 in this case)

5.4.5 FormatAvgBaseQualCounts

FormatAvgBaseQualCounts takes the output of AvgBaseQualCounts and extracts its counter values. For a complete
example see above or script scripts/fast fastqc.pig.

Usage:

avgbase_qual_counts = FOREACH (GROUP read_seq_qual ALL) GENERATE
AvgBaseQualCounts($1.$0);

formatted_avgbase_qual_counts = FOREACH avgbase_qual_counts GENERATE
FormatAvgBaseQualCounts($0);

Field Type Description
Input schema: long array NxM bytearray counter values encoded as bytes (N is the number of differ-

ent quality values and M is 1 in this case)

Output schema:
(bag)

pos integer position (always 0 in this case)
mean double avg. base quality, averaged over the set of reads
stdev double standard deviation of average base quality over the set of

reads
qual1. . .qualN double number of occurrences of each (average) quality

5.4.6 BaseQualCounts

Usage:

reads = LOAD 'input.fq' USING FastqLoader();
qualities = FOREACH reads GENERATE quality;
base_qual_counts = FOREACH (GROUP qualities ALL) GENERATE BaseQualCounts($1);
formatted_base_qual_counts = FOREACH base_qual_counts GENERATE

FormatBaseQualCounts($0);

Field Type Description
Input schema: arbitrary chararray base qualities
Output schema: long array NxM bytearray counter values encoded as bytes (N is the number of differ-

ent quality values and M is the READLENGTH)

19

5.4.7 FormatBaseQualCounts

FormatBaseQualCounts takes the output of BaseQualCounts and extracts its counter values. For a complete example see
above or script scripts/fast fastqc.pig.

Usage:
base_qual_counts = FOREACH (GROUP qualities ALL) GENERATE BaseQualCounts($1);
formatted_base_qual_counts = FOREACH base_qual_counts GENERATE

FormatBaseQualCounts($0);

Field Type Description
Input schema: long array NxM bytearray counter values encoded as bytes (N is the number of differ-

ent quality values and M is the READLENGTH)

Output schema:
(bag)

pos integer position (ranging from 0 to READLENGTH-1)
mean double avg. base quality at this position, averaged over the set of

reads
stdev double standard deviation of base quality at this position
qual1. . .qualN double number of occurrences of each read quality at this position

5.5 seqpig.pileup

The pileup operation implemented in SeqPig basically consists of two stages. First, each read is inspected and pileup
relevant output is produced for each of the positions of the reference that it “spans”. Note that this may be also more or
less than the readlength, depending if there were insertions or deletions. Then the output of this first stage is grouped
by (chromosome, position) and pileup output from different reads affecting the same reference position is merged. The
output should be the same that can be obtained by an operation of Samtools mpileup.

The last UDF in this section (BinReadPileup) increases parallelism by adding a pre-processing step that first partition
reads into bins by their alignment position and then calls the two other UDF’s in each of the bins. Fore more details see
Section 3.1.8 and for a complete example see script scripts/pileup2.pig.

5.5.1 ReadPileup

The ReadPileup UDF performs the steps of the first stage described above and operates on single reads that are passed
with a subset of their fields. It produces a bag of tuples as output.

20

Usage:

reads = load 'input.bam' using BamLoader('yes');
read_pileup = FOREACH reads GENERATE ReadPileup(read, flags, refname, start,

cigar, basequal, attributes#'MD', mapqual), start, flags, name;
read_pileup = FILTER read_pileup BY $0 is not null;
pileup = FOREACH read_pileup GENERATE flatten($0), start, flags, name;
grouped = GROUP pileup BY (chr, pos);
result = FOREACH grouped {

tmp = FOREACH pileup GENERATE refbase, pileup, qual, start, (flags/16)%2, name;
tmp = ORDER tmp BY start, $4, name;
GENERATE group.chr, group.pos, PileupOutputFormatting(tmp, group.pos);

}

Field Type Description

Input schema:

sequence chararray read bases
flag integer SAM flags
chr chararray chromosome / reference name
position integer position of read
cigar chararray CIGAR string
basequal chararray base qualities
md chararray MD tag
mapqual integer mapping quality

Output schema:
(bag)

chr chararray chromosome / reference name
position integer position (on reference)
refbase chararray base on reference (if known, else null)
pileup chararray pileup string for this read
qual chararray base quality/ies for this read (if applicable, else null)

5.5.2 PileupOutputFormatting

The PileupOutputFormatting UDF performs the second stage of the pileup, which is the merging of the output coming
from different reads for the same reference position. Note that the UDF assumes that input is passed in the order of
reference position. For usage see the example code above.

Field Type Description

Input schema: pileup bag bag of tuples produced by ReadPileup, grouped by position
position integer reference position this pileup data originates from

Output schema:
(bag)

refbase chararray reference base
count integer number of reads (depth)
pileup chararray pileup string
qual chararray base qualities

5.5.3 BinReadPileup

This UDF aims to increase parallelism during the pileup computation by partitioning reads into bins by their alignment
position and then calling the two previous UDF’s in each of the bins. Note that each bin corresponds to a half-interval
over the reference position of some reference segment (chromosome). The bin size (500 bases in the example code
below) is essentially arbitrary but should be larger than the read length (plus maximum insertion size). For a complete
example see script scripts/pileup2.pig.

21

Usage:

reads = load 'input.bam' using BamLoader('yes');
crossing_Reads = FILTER reads BY start/500!=end/500;
crossing_reads = FOREACH crossing_Reads GENERATE read, flags, refname, start,

cigar, basequal, attributes#'MD', mapqual, name, end/500;
all_reads = FOREACH reads GENERATE read, flags, refname, start, cigar, basequal,

attributes#'MD', mapqual, name, start/500;
input_reads = UNION crossing_reads, all_reads;
grouped_reads = GROUP input_reads BY (refname, $9);
pileup = FOREACH grouped_reads GENERATE BinReadPileup(input_reads,group.$1*500,(

group.$1+1)*500);
pileup = FILTER pileup BY $0 is not null;
result = FOREACH pileup GENERATE flatten($0);
result = ORDER result BY chr, pos;

Field Type Description

Input schema:
reads bag bag of read tuples (each adhering to the input schema of

ReadPileup)
left pos integer left border position of bin (inclusive)
right pos integer right border position of bin (exclusive)

Output schema:
(bag)

chr chararray chromosome / reference name
pos integer position (on reference)
refbase chararray base on reference
count integer number of reads (coverage)
pileup chararray pileup string for this position
qual chararray base quality/ies for this read

22

	Introduction
	Installation
	Dependencies
	Environment variables
	Installing a pre-compiled release
	Instructions for building SeqPig
	Note

	Running on Amazon Elastic MapReduce
	Tests
	Usage
	Pig grunt shell for interactive operations
	Starting scripts from the command line for non-interactive use

	Examples
	Operations on BAM files
	Simple operations
	Filtering out unmapped reads and PCR or optical duplicates
	Filtering out reads with low mapping quality
	Filtering by regions (samtools syntax)
	Sorting BAM files
	Computing read coverage
	Computing base frequencies (counts) for each reference coordinate
	Pileup
	Collecting read-mapping-quality statistics
	Collecting per-base statistics of reads
	Collecting per-base statistics of base qualities for reads
	Filtering reads by mappability threshold

	Processing Qseq and Fastq data
	Converting Qseq to Fastq and vice versa
	Computing a read length distribution
	Computing a distribution of the average base quality of a read
	Distribution of GC content over the read set
	Computing base statistics over the read set
	Clipping bases and base qualities

	Performance tuning
	Pig parameters
	Hadoop parameters
	Compression

	UDF reference guide
	seqpig
	UnalignedReadSplit
	ReadRefPositions
	ReadSplit
	ReverseComplement

	seqpig.io
	BamLoader and SamLoader
	BamStorer and SamStorer
	FastqLoader and QseqLoader
	FastqStorer and QseqStorer
	FastaLoader

	seqpig.filter
	CoordinateFilter
	SAMFlagsFilter
	BaseFilter

	seqpig.stats
	BaseCounts
	FormatBaseCounts
	FormatGCCounts
	AvgBaseQualCounts
	FormatAvgBaseQualCounts
	BaseQualCounts
	FormatBaseQualCounts

	seqpig.pileup
	ReadPileup
	PileupOutputFormatting
	BinReadPileup

