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ABSTRACT Monte Carlo simulations were performed on
a diamond lattice, globular protein model in which the trans
conformational state is energetically favored over the gauche
states (thereby perhaps favoring a B-sheet secondary structure)
and in which nonspecific nonbonded nearest-neighbor attrac-
tive interactions are allowed. If the attractive interactions are
sufficiently weak that the molecule possesses a relatively high
fraction of trans states in the denatured state, then on collapse,
a fB-barrel tertiary structure, highly reminiscent of the ‘“na-
tive’’ structure seen in B-proteins, spontaneously forms. If,
however, the attractive interactions are dominant, a coil-to-
random globule collapse transition is observed. The roles of
short-, medium-, and long-range interactions and topological
constraints in determining the observed tertiary structure are
addressed, and the implications and limitations of the simula-
tions for the equilibrium folding process in real globular
proteins are explored.

The development of an equilibrium statistical mechanical
theory capable of producing the native conformation of a
globular protein starting from the primary sequence is a
long-sought objective of biophysical chemistry (1, 2). The
native structure may possess ordered regions composed of
a-helices and/or B-sheets connected by loops or bends
juxtaposed in a specific and complicated three-dimensional
arrangement. Any successful theory must incorporate the
role of short-, medium-, and long-range interactions as well
as topological constraints inherent in a structure formed from
stiff linear regions (a-helices or B-sheets) joined by bends.
Thus, the development of even a phenomenological statisti-
cal mechanical theory of the globular protein native-to-
denatured transition is very complicated and is unfortunately
beyond existing capabilities. In this paper, we introduce a
series of Monte Carlo simulations of well-defined simple
models designed to guide the development of a qualitative
understanding of various aspects of globular protein folding
as well as to provide a proving ground for the testing of
statistical mechanical theories suggested by the simulation
results.

In the past, equilibrium Monte Carlo simulations have been
used for the folding from a specific native conformational
state to the denatured state or vice versa (3, 4). However, to
reduce the amount of computer time, specific biasing toward
the native structure is used, rather than having the interac-
tions themselves independently dictate the native structure.
For complicated models of real proteins, this is necessary to
keep the requisite computer time within practical bounds. On
the other hand, with this approach one forgoes the insights
that could be obtained if the system were allowed to freely
hunt through all of phase space to ultimately find the native
structure. In the simulations described below, we opt for the
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latter approach and forgo the former inherently more detailed
description of specific proteins.

Another theoretical approach models the thermodynamics
of the globular protein conformational transition by a coil-
to-molten globule transition (5, 6) and proceeds in the spirit
of Flory’s theory (7). The denatured state is assumed to be a
voluminous random coil and the native state is treated as a
compact random coil. That is, the distribution of chain
segments is assumed to be essentially Gaussian. Hence, a
most essential feature of globular proteins, the presence of
highly ordered regions composed of a-helices and/or B-
sheets, is entirely neglected. (Such neglect is understandable
given the difficulty of a priori treating the native state.)
However, this by no means implies that these studies are not
extremely useful. They allow one to qualitatively assess the
importance of local-chain stiffness on the character of the
conformational transition (8, 9). Moreover, these model
calculations are consistent with the two-state model that well
characterizes the equilibrium folding of small, single-domain
globular proteins and can be generalized to treat proteins
containing more than one domain (5). Thus, these treatments
present an important zeroth order picture.

It should be pointed out that the simulation results pre-
sented below have applications to finite single-chain polymer
conformational statistics; a detailed study will be presented
elsewhere.

THE MODEL

Consider a polymer chain composed of n beads confined to
a tetrahedral lattice in a periodic Monte Carlo box of volume
L3. Each bead schematically represents an amino acid resi-
due, and to include the effect of excluded volume multiple
occupancy of a given lattice site is prohibited. For simplicity
here all of the beads are taken to be identical, although this
is not required.

A given overall chain configuration requires the specifica-
tion of n — 3 rotational conformational states, each of which
may be either the lowest energy trans (t) or one of the two
higher energy gauche (g or g_) states. The a priori statistical
weights of trans and gauche states are given by

w =1 [1a]

wg, = wg_ = exp{—¢&y/kpT}, (1b]
where & = 0. In addition, we include the possibility of an
attractive interaction between nearest-neighbor, nonbonded
pairs of beads of strength e, = —Ag,, with A > 0. Since the
polymer is confined to a tetrahedral lattice, the interaction is
directed along a bond and in a sense mimics hydrogen
bonding. This fact combined with the lowest-energy confor-
mational state being trans might allow for the formation of
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antiparallel B-sheets in the ordered, low-temperature state.
Thus, the present simulation focuses on the properties of a
hypothetical, homopolymeric B-protein (2, 10). It should be
pointed out that by choosing a different set of parameters
(e.g., &, < 0, g_ > 0), one might conceivably produce
compact structures containing right-handed a-helices.

The simplicity of the model also carries with it certain
limitations. In the present formulation, the a priori statistical
weight of a gauche state of an individual bond is independent
of the conformation of the nonbonded nearest neighbors. As
the temperature is reduced, trans states become more favor-
able, and we would expect, and indeed do find, a more
ordered unfolded structure (i.e., one containing a higher
fraction of trans states) than is actually present in real
proteins (1, 11). Nevertheless, as demonstrated below, the
present model exhibits numerous qualitative features of a
globular protein folding transition, and thus the study of it
should hopefully prove to be useful and informative.

A successful Monte Carlo algorithm must be able to
quickly and efficiently sample the phase space accessible to
the chain in both the expanded, essentially random coil and
the compact structures. We have used two Monte Carlo
sampling algorithms, both of which produce essentially
identical equilibrium properties. Basically, a cycle consists of
(i) a “‘reptation’’ step [which is the most efficient part of the
algorithm (12, 13)]—in one of the algorithms, one of the chain
ends is randomly chosen, and the end bead is snipped off and
added (at a random orientation) to the other end while, in the
other algorithm, clipping proceeds from one end until the
move is unsuccessful and then proceeds from the other end;
(ii) end flips in which one or two bonds at a chain end are
randomly rotated; and (iii) three-bond, kink motions involv-
ing (for a randomly chosen bond) g. — g=.

For each particular set of parameters, long runs consisting
of from 0.3 to 5 X 107 reptation steps plus a corresponding
number of steps (ii) and (iii) were performed. Great care was
taken to ensure proper equilibration of the systems, after
which equilibrium properties, described below, were calcu-
lated every 250-500 cycles; thus, a total of 2-6 X 10* states
contribute to each equilibrium average. If n < 400, L = 100
and for the more expanded chain conformations when n =
400, we set L = 124. Additional details describing the
specifics of the simulations will be published elsewhere. In
the case of stiff polymers, a series of both ‘‘cooling’’ and
‘‘heating’’ runs were performed near the collapse transition
to explore the existence of metastable states and to estimate
the statistical uncertainty in the reported results.

RESULTS

We begin by examining, for a chain containing n = 200 beads
(Fig. 1A), a plot of (R?)/(n — 1)I? vs. kgT/ ¢, as a function of
the ratio, A, of the absolute value of the attractive interaction
energy between nonbonded nearest-neighbor pairs of beads
to the energy of a g state. Smaller values of A imply that local
chain stiffness is relatively more important. Here, (R?) is the
mean square end-to-end distance obtained from the Monte
Carlo simulation and [ is the length of a single bond. If the
temperature is infinite, then the probability of being in a
gauche or a trans state is equal. The open arrow shows the
value for an ideal chain (nonreversing random walk) at
infinite temperature in a system entirely devoid of attractive
interactions between nonbonded nearest-neighbor beads
(14). The plot for a system obeying ideal chain statistics—i.e.,
chain dimensions obtained from the rotational isomeric
model (15)—is represented by the dotted line. The solid
arrow shows the corresponding chain dimensions for the
athermal system—i.e., one in which g, = g; = 0—but where
multiple occupancies of all lattice sites are prohibited. The
curve having solid squares joined by a dot-dashed line
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Fi6.1. (R®/(n—1)I*vs. kpT/¢, for chains containing n = 200 (A)
and n = 400 (B) beads.

presents the Monte Carlo data for a system lacking attractive
interactions (A = 0) but whose fraction of trans states and
concomitantly intrinsic stiffness increases with decreasing
temperature. As expected, chains possessing excluded vol-
ume (dot-dashed line) but lacking attractive interactions have
larger dimensions than those predicted by ideal chain statis-
tics (dotted line).

Next we investigate (Fig. 14) the role of increasing
attractive interaction for systems possessing a given intrinsic
stiffness. The dependence of (R2)/(n — 1)I2 on the value of A
for values of 1/4,1/3, 1/2, 3/4, and 1.0 is represented by the
curves defined by the filled circles, open circles, open
octagons with a cross, triangles, and diamonds, respectively.
In Fig. 1B, we present a representative selection of plots
(R%/(n — 1)I? vs. kpT/ e, for chains containing n = 400 beads
(all symbols are identical to those used in Fig. 1A).

In Fig. 1A, the system having A = 1/2 (open circles) clearly
divides the behavior of (R?) as a function of temperature into
two distinctly different regimes. We continue by discussing
the behavior of systems having A > 1/2. Here, the attractive
interactions dominate, and we observe a continuous collapse
to a compact, disordered globule. Representative high- and
low-temperature configurations obtained from the simulation
are shown in Fig. 24. Physically, because of the relatively
large value of A, the chain collapse occurs when there are a
large number of independent statistical segments, each of
length P (in units of bond length), per chain. Thus, since these
chains always remain relatively flexible, the possibility of a
collapse to a compact disordered structure is not at all
surprising and in fact has been recognized for >25 years (15).
Furthermore, because of the relatively high degree of chain
flexibility, the transition is continuous. It is of interest that
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Fi1G. 2. (A) Representative expanded and compact configurations of a flexible polymer. (B) Representative expanded and compact

configurations of a locally stiff polymer.

once the collapsed state is reached, the fraction of gauche
states, f;, becomes frozen in because of the high density of the
compact structure, is essentially temperature independent,
and lies considerably above the ideal chain value obtained by
using the statistical weights from Egs. 1a and b, f3. For
example, at kgT/e; = 0.5, when A = 1, the system with n =
200 has f; = 0.5485, whereas f2 = 0.2130. This provides
additional evidence that the attractive interactions dominate
over the effect of increasing chain stiffness. In fact, by
freezing the value of f; close to that at which the coil-to-
globule transition occurs, the collapsed, disordered state is
locally more flexible than that predicted for the hypothetical
expanded disordered state at the same temperature. Finally,
if we define the 0 temperature as the temperature at which
(R?) from the Monte Carlo simulation equals that calculated
by ideal-chain statistics (Where the dotted and dashed lines in
Fig. 1A cross), we see the expected monotonic decrease in
chain dimensions on decreasing T below 6 (16, 17).

When A = 1/2 and n = 200, over a wide temperature range,
(R? is essentially independent of kpT/e,; i.e., as kpT/s,
decreases, the increase in local chain stiffness that acts to
increase (R?) is almost completely compensated by the
attractive interactions between segments that serve to de-
crease (R?). Ultimately, as kpT/e, further diminishes, the
attractive interactions dominate and this system, too, col-
lapses to a globule that may (with the inherent uncertainties
of the simulation we cannot say with absolute certainty)
contain some locally ordered regions.

We turn next to the behavior of systems having A < 1/2,
where over a large temperature range, the increasing local

stiffness with decreasing temperature that tends to expand
the coil dominates over the attractive interactions between
segments that tend to contract the coil. Hence, as shown in
Fig. 1A, (R? increases as kpT/¢, decreases, a trend that is
evident even below the 6 temperature. However, these
molecules are still far from the rigid rod limit that, for
example in the n = 200 case, gives (R%)/(n — 1)I* = 132.6. The
system having A = 1/4 appears to possess a discontinuous
transition to a collapsed state; the less stiff system with A =
1/3 has a very cooperative, but apparently continuous,
collapse transition.

Representative structures for the expanded coil and the
highly ordered system obtained from the simulation for the
case n = 200 and A = 1/4 at the phase transition temperature
are shown in Fig. 2B. The ‘‘native’’ state contains from four
to six (depending on the run) antiparallel B-strands whose
conformation is highly reminiscent of the cylindrical arrange-
ment of B-pleated sheets seen in globular proteins (2). The
particular conformation displayed here appears to resemble
the Greek key (18) with one of the internal strands eliminated.
What is remarkable is that such a highly ordered structure
emerges from a system lacking any site-specific interactions.
We describe below a simple physical rationalization of these
observations.

Unlike the case in which attractive interactions dominate
prior to the coil-to-globule collapse, prior to the transition to
the ordered phase there are a relatively small number of .
independent segments of length P; i.e., these molecules
behave not like polymers in which n >> P but like ‘“small’’-
to ‘‘moderate’’-size molecules in which n is about an order of
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magnitude greater than P. (For example, in the case n = 200
and A = 1/4, there are =20 independent segments per chain.)
Because these molecules are locally stiff, prior to the collapse
transition they experience a considerable reduction in acces-
sible phase space available in the disordered state relative
to a highly flexible Gaussian chain; the preformed trans
stretches are indicative of a successive partitioning of con-
figuration space that greatly expedites the search for the
ordered, B-sheet phase of the native state. This study
suggests that such partitioning might occur in the equilibrium
folding process of ‘‘real’’ globular proteins (5).

Further insight is obtained from Table 1, which presents
the mean length of a trans sequence under a variety of
conditions. Comparison of column iv with column vi and of
column v with column vii indicates that n, and (n,) are
essentially molecular weight independent. Together with the
fact that the persistence length P depends on A and not on
molecular weight, this implies that as n — o at fixed A, the
transition should become continuous and produce a collapse
to a globule that lacks global ordering but possesses consid-
erable local parallelism of constant-length trans stretches.
Evidence indicative of this behavior is provided by compar-
ing in Fig. 1 A and B the two curves having filled or open
circles; the latter case with A = 1/3 is most prominent. The
maximum in (R?)/(n — 1)I? is reduced on going from n = 200
to n = 400, and the slope of (R?) vs. kpT/¢, also decreases in
magnitude with increasing n.

Another striking characteristic of the conformational tran-
sition is evident from Table 1. At the transition temperature,
the mean length of a trans stretch in the ordered collapsed
state increases over that in the disordered state. In other
words, the collapse itself induces additional ordering. This
study points out how intersegmental interactions can perturb
the conformational equilibrium between trans and gauche
states. Further evidence comes from the direct examination
of the values of f, that are appreciably less than that in an
ideal chain. For example, the n = 200 chain with A = 1/4 in
the ordered state has f, = 0.0888 whereas ngis 0.1814. While
the short-range interactions (the preference for trans over
gauche states) dictate that the tertiary structure is a B-sheet,
it is in fact the ‘‘long-range’’ nonbonded attractive interac-
tions that dictate the linear dimensions of the B-sheet.
Otherwise, the mean length of a trans stretch would be
essentially the same both above and below the transition, and
this is not the case.

Physically, the excess stiffening of the chain in the ordered
state resulting in longer trans stretches is due to the desire of
the system to minimize the number of bends and maximize
the number of contacts between nonbonded beads. On a
diamond lattice, it takes a minimum of four bonds to reverse

Table 1. Average length of a trans sequence

n = 200, n = 200, n = 400,
A=1 A=1/4 A=1/4
kBT/Gg n, (ny) n, (ny) ny (ny)
x 1.528 2.069 1.528 2.069 1.529 2.073
2 1.815 2.633 1.852 2.723 1.853 2.725
1.25 1.985 2.867 2.117 3.243 2.131 3.284
1 2.445 3.751 2.360 3.746 2.376 3.767

0.667 2705 3.856 3.200 5.408 — —
0.5 2.681 3.920 4.661 8.297 4.716 8.526

0.5) — — — — (14.16)  (34.63)
0.455 — — 5.593 10.39 — —
(0.455) — — (22.48)  (35.09) (15.80) (35.19)

n,, arithmetic average of mean length, in numbers of bonds, of an
all-trans sequence. (n,), weight average: (n,) = (1/f) 2% i« fii,
where f, ; is average fraction of trans states in sequence of length i.
Data in parentheses are for the collapsed, ordered structure.
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direction, and the bonds in the bend do not experience any
attractive interactions. Moreover, bends or loops are disfa-
vored by entropic considerations. Since the ends of the loop
are constrained to be at the correct distance and orientation
that allows the two B-strands to interact, they perforce have
a reduction in allowed phase space relative to the case in
which any distance and orientation of the ends are allowed.
This effect is known as loop entropy (19, 20) and generally
acts to keep the bends fairly tight (allowing of course for
lattice constraints) (21). Thus, the fraction of gauche states is
reduced in the native state over what it was in the expanded,
globally ‘‘denatured’’ state.

The above discussion suggests a simple procedure for
calculating the phase transition temperature kgT/e,. For the
denatured state, let us assume that the Helmholtz free
energy, Aq, is well approximated by that of a locally stiff ideal
chain, corrected for attractive interactions between non-
bonded nearest neighbors. (Actually, the latter contribution
is very small, but it is included for completeness.) This
approximation is based on the fact that these polymers are
locally quite stiff and thus excluded-volume effects should be
relatively unimportant ((R?) is somewhat less than ideal chain
dimensions). Thus, we set

Agq = —kpT(n — 3)In[1 + 2 exp(—¢,/ksT)] + nvqe,. [2a]

Furthermore we approximate the Helmholtz free energy of
the ordered phase, Ay, by assuming it is merely the average
attractive interaction energy between nonbonded pairs of
beads and entirely neglect any entropic contribution. Since
the ordered states are highly specific structures confined to
a lattice, this should be a reasonable approximation. Thus,

Ao = nvge,. [2b]

In Eq. 2 a and b, nyy (nv,) is the average number of pairs of
interacting beads per molecule in the disordered (ordered)
phase at the transition temperature and is obtained from the
Monte Carlo stimulation. Equating Egs. 2 a and b allows us
to obtain kgT;/¢,. In Table 2 we present results for the n =
200 and n = 400 systems with A = 1/4 and 1/3. As expected,
the results improve when A is decreased (increasing the
relative importance of local chain stiffness) and when n is
increased at fixed A (the latter is probably a finite-size effect).
Clearly for the A = 1/4 case, the approximations embodied
in Egs. 2aand b work remarkably well. For the A = 1/3 case,
the value of kpT/¢, predicted for the n = 400 case is fairly
good while, for the n = 200 case, in which the transition
between ordered and disordered phase is continuous, the
predicted value of kgT/¢,; is in poor agreement with the
simulation. Thus, we conclude that the simple picture devel-
oped above appears to work when one has an abrupt,
apparently first-order transition between a disordered, but
locally stiff, coil and a very well defined B-pleated sheet,
globular phase.

For the system with A = 1/3 undergoing a continuous
transition to the ordered state, we cannot tell from our Monte
Carlo simulations containing a single molecule whether or not
it is adequately described by the two-state model. However,

Table 2. Comparison of the transition temperatures kpT,/¢,
kBTt/es

n A Vg Vo Calc.* Monte Carlo
200 1/4 0.0373 0.463 0.482 0.455
400 1/4 0.0395 0.499 0.494 0.500
200 1/3 0.139 0.294 0.383 0.529
400 1/3 0.069 0.472 0.523 0.575

*QObtained by equating Eqgs. 2 a and b.
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since the properties of these systems continuously change as
a function of A for A < 1/2, and since there is a pseudo-
first-order phase transition with A = 1/4, where the two-state
model certainly holds, we expect it to hold for the A = 1/3

case also.

DISCUSSION

In the present series of Monte Carlo simulations, we have
examined a class of model systems that possesses many
qualitative aspects of the equilibrium folding transition in
globular proteins. Provided that the molecule possesses
sufficient local stiffness because of a relatively high fraction
of trans states prior to a very cooperative transition to a
condensed state, we have found that the collapsed confor-
mation is remarkably similar to the B-barrel conformation
seen in some globular proteins. However, caution should be
exercised in overinterpreting these results in that the disor-
dered state probably possesses greater secondary structure
than in the denatured state of a globular protein. It is in fact
the presence of such a residual structure that makes the
transition pseudo-first-order rather than continuous (com-
pare for example the A = 1/4 case vs. the A = 1/3 case).
Nevertheless, even with this caveat the ordered state of these
systems is highly reminiscent of the native globular protein.
First, the collapse itself is seen to induce substantial addi-
tional secondary structure. Furthermore, the folding appears
to proceed from states that successively sample smaller and
smaller regions of phase space and that are funneled into the
native state. In our case, the reduction in phase space
proceeds by the preformation of local trans stretches. Final-
ly, since even in the absence of site-specific interactions,
B-barrel-like native structures are formed, this implies that an
important factor determining the conformation of the globu-
lar protein may be the location of the loops and/or bends
(22-24), with the tertiary structure then mediated by the site
specificity of the subsequent long-range interactions that then
induce additional tertiary structure (25).
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