
Supplementary Material to Parameter
Estimation of Partial Differential Equation Models

S.1 Calculation of the Penalty Matrix R(θ)

We have that R(θ) is a K ×K matrix which has (j, `)th entry
∫
fj(x;θ)f`(x;θ)dx. Using

the notation of matrix integration, we write R(θ) =
∫

f(x;θ)fT(x;θ)dx, where f(x;θ) =

{f1(x;θ), ..., fK(x;θ)}T. In our empirical work and simulations based on the PDE model

(2), the penalty matrix R(θ) is the summation of 10 matrix integrals of the same structure,

defined as

R(θ) =

∫
z

∫
t
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∂2b
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)
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)
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)
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−θS
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∂t
bT + b

∂bT

∂t

)
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,
L∑
`=1

r`(θ)B`, (S.1)

where L = 10, B` are known constant matrices, and r`(θ) are known functions of θ.

We compute B` for ` = 1, ..., 10 following the same rule. In general, we can use the

composite Simpson’s rule repeatedly to evaluate the integrals. For a univariate function

φ(x) and an even integer Q, the composite Simpson’s rule approximates the integral as∫ b

a

φ(x)dx ≈ (h/3)
{
φ(x0) + 2

∑Q/2−1
q=1 φ(x2q) + 4

∑Q/2
q=1φ(x2q−1) + φ(xQ)

}
= (h/3)

∑Q
q=0wqφ(xq),

where h = (b − a)/Q, xq = a + qh, for q = 0, 1, ..., Q, are quadrature points, and

(w0, w1, w2, ..., wQ−2, wQ−1, wQ) = (1, 4, 2, 4, ..., 2, 4, 2, 1) assigns weights to quadrature points.

In order to calculate, for example B3, let Q1 denote the number of quadrature knots in the

time domain, s1 = (t1, ..., tQ1) the vector of knots, and w1 the vector of weights. Similarly,

Q2, s2 = (z1, ..., zQ2) and w2 are the number of quadrature knots, knot vector, and weight



vector in the range domain. Then the (i, j)th entry B3,ij is

B3,ij =

∫ ∫
bi(t, z)bj(t, z)dtdz ≈ (h/3)2

Q2∑
k=1

Q1∑
`=1

w1,`w2,kbi(t`, zk)bj(t`, zk). (S.2)

Define W as a diagonal matrix with diagonal elements w1 ⊗ w2. Denote the quadrature

points by Z = {(t1, z1), ..., (t1zQ2), ..., (tQ1z1), ..., (tQ1zQ2)}T, and B(Z) the matrix of basis

function evaluated at the quadrature points. Then the approximation of matrix B3 can be

expressed neatly as B3 ≈ BT(Z)WB(Z).

S.2 Implementation of the Variance Estimator

We propose the variance estimate as

Σ̂n,prop = Λ−1
n (θ̂)C(θ̂){Λ−1

n (θ̂)}T, (S.3)

where C(θ̂) is a matrix whose (j, k)th element is Ĉjk = nλ̃4σ̂2
ε β̂

T
(θ̂)ŴjG

−1
n (θ̂)SnG

−1
n (θ̂)Ŵkβ̂(θ̂)

and Λn(θ̂) =
∑n

i=1∂Ψi(θ̂)/∂θT. Here σ̂2
ε is the estimated variance of ε(xi) and can be cal-

culated by first fitting a standard spline regression and then forming the residual variance.

Also, Ŵj = V̂j + V̂T
j , where V̂j = R(θ̂)G−1

n (θ̂)Rjθ(θ̂).

The above estimator requires analytic expression of ∂β̂(θ)/∂θ and ∂Ψi(θ)/∂θ. These

quantities could be obtained using the implicit function theorem, which is introduced as

follows. Dependence on θ is dropped where appropriate.

To find the first-order derivative of β̂ with respect to θ, take total derivative with respect

to θ on both sides of the identity ∂J(β|θ)/∂β|β̂ = 0, we get

d

dθ

(
∂J

∂β

∣∣∣∣
β̂

)
=

∂2J

∂θT∂β

∣∣∣∣
β̂

+
∂2J

∂βT∂β

∣∣∣∣
β̂

∂β̂

∂θ
= 0.

Assuming that ∂2J/∂βT∂β|β̂ is non-singular, which is true for our model, we obtain the

analytic expression of the first-order derivative of β̂ as,

∂β̂

∂θ
= −

(
∂2J

∂βT∂β

∣∣∣∣
β̂

)−1(
∂2J

∂θT∂β

∣∣∣∣
β̂

)
. (S.4)

It is easily seen from (7) that

∂2J

∂βT∂β
= 2{BTB + λR(θ)}, (S.5)

and that

∂2J

∂θT∂β
= 2λ

∂

∂θ
{R(θ)β} . (S.6)
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Substitute the above into (S.4) and we have

∂β̂

∂θ
= −λ{BTB + λR(θ)}−1

[
∂

∂θ
{R(θ)β}

∣∣∣∣
β̂

]
. (S.7)

The first-order derivative of Ψi(θ) with respect to θ is, for i = 1, ..., n,

∂Ψi

∂θ
=
∑K

k=1bk(xi){Yi − bT(xi)β̂(θ)} ∂
2β̂k

∂θ∂θT
−

(
∂β̂

∂θ

)T

b(xi)b
T(xi)

(
∂β̂

∂θ

)
.

To find the second-order derivative of β̂k with respect to θ, take the second-order total

derivative with respect to θ on both sides of the identity ∂J/∂βk|β̂k
= 0, we get, for k =

1, ..., K,

d2

dθTdθ

(
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∂βk

∣∣∣∣
β̂k

)
=

d

dθT

{
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θ

(
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=
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+
∂3J

∂θ∂β2
k
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β̂k
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k
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∣∣∣∣
β̂k

∂β̂k
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∂θT

= 0.

Obviously for our method, we have that ∂3J/∂β3
k ≡ 0, so the last term in the above result

disappears. Assuming that ∂2J/∂β2
k

∣∣
β̂k
6= 0, then the analytic expression for the second-

order derivative of β̂k is obtained as,

∂2β̂k
∂θ∂θT

= −

(
∂2J

∂β2
k

∣∣∣∣
β̂k

)−1(
∂3J
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+
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k

∣∣∣∣
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)
. (S.8)

To complete the calculation, we need to know the following quantities,

∂R(θ)β

∂θ
,

∂3J

∂θ∂θT∂βk
, and

∂3J

∂θ∂β2
k

,

all of which involve derivatives of R(θ) with respect to θ. The ensuing derivation depends

on the particular PDE model of interest.

S.2.1 Implementation with PDE Example (2)

We explain in this section the calculation of above model dependent quantities, in the context

of the PDE model (2). We know

f(x;θ) =
∂b(x)

∂t
− θD

∂2b(x)

∂z2
− θS

∂b(x)

∂z
− θAb(x),
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where b(x) = {b1(x), ..., bK(x)}T is the vector of basis functions. The matrix R(θ) is shown

in (S.1). In this example, the coefficients of matrices B`’s are

r1(θ) = θ2D, r2(θ) = θ2S, r3(θ) = θ2A, r4(θ) = θDθS, r5(θ) = θDθA,

r6(θ) = θSθA, r7(θ) = −θD, r8(θ) = −θS, r9(θ) = −θA, r10(θ) = 1.

Then we have

∂R(θ)β

∂θ
=

∂

∂θ

L∑
`=1

r`(θ)B`β

=
L∑
`=1

B`β
∂r`(θ)

∂θT
.

Notice that (∂2J/∂θ∂βk)
T is the kth row of ∂2J/∂θT∂β given in (S.6). Let b̃`,k be the kth

row of B`, then B` = (b̃T
`,1, ..., b̃

T
`,K)T. Then, we could write

∂2J

∂θ∂βk
= 2λ

L∑
`=1

b̃`,kβ
∂r`(θ)

∂θ
.

Then

∂3J

∂θ∂θT∂βk
= 2λ

L∑
`=1

b̃`,kβ
∂2r`(θ)

∂θ∂θT
. (S.9)

In this simulated example

∂2r1(θ)

∂θ∂θT
=


2 0 0

0 0 0

0 0 0

 ,
∂2r2(θ)

∂θ∂θT
=


0 0 0

0 2 0

0 0 0

 ,
∂2r3(θ)

∂θ∂θT
=


0 0 0

0 0 0

0 0 2

 ,

and ∂2r`(θ)

∂θ∂θT ≡ 0, for ` = 4, ..., 10. Notice that ∂2J/∂β2
k is the kth diagonal element of

∂2J/∂βT∂β given in (S.5), then

∂3J

∂θ∂β2
k

= 2λ
L∑
`=1

B`(k, k)
∂r`(θ)

∂θ
, (S.10)

where B`(k, k) is the kth diagonal element of the matrix B`.
Finally, substituting ∂2J/∂β2

k, (S.9) and (S.10) into (S.8) results in the expression of

∂2β̂k/∂θ∂θ
T. The matrices B1, ...,B10 are calculated using Simpson’s rule, see to Supple-

mental Material Appendix S.1 for detailed calculation.
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