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Definition of partition overlap measures

Consider a set of locations T of cardinality n and two partitions C and C’ of T, then the set of all
unordered pairs of elements of 7 is the union of the sets [1,2]:

t11 is the set of pairs the same community under C and C’;

to1 is the set of pairs not in the same community under C but under the same community in C’;
t10 is the set of pairs in the same community under C but not under the same community in C’;
too is the set of pairs not in the same community under C and C’;

and ny1, Mo1, N10, Noo are their respective cardinalities, and n11 + ng1 + n1p + noo = n(n — 1)/2. The

R [3] and F [4] indices are then given by:
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which are two ways of quantifying how well the partitions match pairs of locations. A perfect match be-
tween two partitions will have R, F = 1. For the case of two completely unrelated clusterings, both indices
are in general strictly larger than zero, more so for R [4]. Therefore, to have a baseline, we calculated
the average indices over 1000 random reshufflings of locations in given partitionings of administrative
regions, denoted by R, and F,.

The classical measures R, F are asymptotically invariant of the problem size n, and only weakly n-
invariant for finite n, therefore being well suited for different data sets as in our case. However, their
base lines can vary heavily (R between 0.5 and 0.95, F between 0 and 0.6), making their linearity and
usefulness doubtful even after normalization [1]. To have a measure grounded in another, information-
theoretical approach, we also use the variation of information VI, defined as

VI(C,C') = H(C) + H(C) — 21(C,C"), 2)

where H(C) is the Shannon entropy of partition C and I(C,C’) the mutual information between the two
partitions C and C’,
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where P(i) = |(;;i| is the probability that an element of 7 chosen at random belongs to community

C; € C,and P(i,j) = 1Nl ﬂ il the probability that an element belongs to C; € C and to C} € C'. The



VI has mathematical properties that are in line with our general intuition of what “more different” and
“less different” should mean for two clusterings of a set. Although the VI is bounded by log, n, we are
not making use of its normalized form (division by log, n) since it does not allow comparisons between
distances obtained on different data sets [1].

The Algorithm

To the extracted communication networks we apply a standard modularity optimization approach for
community detection [5,6]. The approach scores all the edges of the network according to their relative
strength with respect to the weight of the nodes they connect and aims to maximize the cumulative score
inside the communities, preferring edges with a positive score and avoiding those with a negative score.
The particular optimization algorithm [7] (further referred as “Combo”) is a novel enhancement of the
technique used by [8]. The idea is an iterative improvement of the partitioning in terms of the modularity
score, starting from a trivial case where all nodes are gathered into one community following three steps of
improvement: 1) dividing a community into two new communities, 2) joining two communities into one,
and 3) shifting a part of one community to another existing community. The technique of splitting the
community for the purpose of the first and third operations is based on the Kernigan-Lin approach [9] in
a way similar to the refinement procedure suggested by [5]. The algorithm effectively avoids getting stuck
in local maxima and usually produces the best modularity scores compared to the majority of modularity
optimization algorithms known so far including Newman’s greedy optimization heuristic [10], Newman’s
spectral optimization with refinement [5], simulated annealing [11] and another fast aggregation algorithm
for large networks recently suggested by [12] known as Louvain method. It allows to handle networks up
to 5,000-10,000 nodes in a reasonable time which corresponds to the dimension of our networks.

We use this particular algorithm here for an improved partitioning quality for the large networks,
see Fig. S3 and Table S1. Although major qualitative properties of the partitioning remain the same
and do not considerably depend on the particular algorithm used, see also section “Independence on the
algorithm” below, as high as possible modularity scores are reached, together with an improved quality
of boundary definitions and lowered levels of noise (less “islands”).

The intriguing property of the modularity optimization approach is that the resulting network division
has no predetermined number of partitions. Only the raw topological information of the input network
determines the range of communities detected — the algorithm may detect any number of communities
between 1 (the full network) and N, the number of nodes (where each community is made up of one
single node). Further, the algorithm does not fix the sizes nor the distribution of sizes of the detected
groups, and it is not limited by any spatial constraints. Note that on the one hand, in cases where the
algorithm produces boundaries which match official boundaries this can carefully be interpreted as having
a “natural” validation. On the other hand if the algorithm does not so, the reasons — apart from a genuine
deviation of human interaction regions from official boundaries — could also include low population density
near the border making boundaries visually floating but leaving modularity scores practically unchanged,
and other possible minor statistical fluctuations. Due to such influences, the boundaries produced by
the algorithm cannot always be treated as definitely exact, as they may be shifted slightly. However, the
cores of detected regions have been shown to be stable [8].

Stability analysis

The findings presented in the main text are based on a particular partitioning algorithm, and on a number
of data sources possibly featuring different measurement errors or modes of collection. Therefore, here
we proceed with an analysis of the variations of outcomes from running the algorithm multiple times,
and of the strength of the partitions under perturbations, to understand the robustness and limits of the



approach.

Robustness of algorithm

The used “Combo” method involves a stochastic element and therefore does not necessarily produce the
same partitioning result with every run [7]. To test possible variations, we ran the algorithm 10 times for
Portugal. All 10 results gave exactly the same results, showing that for the case of large spatial networks
of communications there are practically no variations.

Independence on the algorithm

To test the robustness of the partitions in respect to the clustering algorithms used, we applied three
additional standard algorithms besides our “Combo” method: the Louvain method [12], Newman’s greedy
optimization heuristic [10], Newman’s spectral algorithm with refinement [5]. Resulting clustering overlap
indices with the administrative regions are shown in Table S1. Generally the indices show comparable
levels of overlap, in most cases slightly increasing for partitioning with better modularity; while the index
VI is lower when the similarity is higher. The finding of similarity to official regions is also qualitatively
independent of the algorithm used, as well as the “natural balance” of the number of regions, see number
of communities in Table S1. Finally, see Fig. S3, using the examplary case of Portugal (but holding
for the other countries as well), the geographical cohesiveness of resulting communities is also confirmed
by all algorithms — apart from some minor noise, resulting communities consist of spatially adjacent
locations. Therefore, the main qualitative properties of the partitioning seem to be independent of the
algorithm, but using higher performance algorithms helps improving the overall quality of the delineation
of boundaries and reducing noise levels.

Robustness of network data

To probe the robustness of the resulting partitions to noise in the data collection, we ran community
detection on several realizations of each network, each of which we perturbed with increasing levels of
noise, and compared the results with official administrative areas.

We devised the perturbations based on a simple model for the formation of the network: we assumed
that, for each of the N phone calls, source and destination nodes are chosen according to a multinomial
distribution, in which connectivity likelihoods f;; are approximated by the observed fractions fij = N,;/N
for boostrapping purposes.

As a simplifying step, we decided to treat each pair of nodes as independent of all other pairs, and
thus governed by a binomial, which is the corresponding marginal distribution.

As a further step to ensure the numerical feasibility of the generation of each network, we approximated
the binomial distribution by using the corresponding Gaussian, in accordance with the de Moivre-Laplace
theorem.

Perturbed networks were thus generated as

!
Nij = Nij “+ wn Nija
where n is a normal random variable with zero average and unit standard deviation, and w is an arbitrary

weight which we varied to obtain a better understanding of the solidity of partitioning.
When considering duration of calls D;;, the generated network incurs an additional factor:

Dj; = Dij +wny/(D)Dij,

where (D) =37, D;;j/N is the average duration of each call.



For each network, we varied w from 0 (original network) to 10.5; then, for each w we generated 10 net-
works, computed the corresponding community structure, and compared it to the original administrative
area using the cluster overlap index R.

Results are shown in Supplementary Fig.S1. It should be noted that employing the alternative indices,
F and VI, yields precisely the same qualitative behaviour.

In the case of Belgium, moderate perturbations (w =~ 2) of the network result in sizable variations
in the resulting partition, which stabilize when the noise increases. Even higher levels precipitate the
overlap, as the underlying network is overcome by fluctuations. Similar analyses apply to Portugal and
other networks.

The values of w at which steep slopes happen in Supplementary Fig.S1 can be interpreted as levels of
noise which are just strong enough to shake subsets of links responsible for the stability of the partition;
this point of view also justifies the corresponding net increase of standard deviation for R. However in all
cases values of w for which the variations become considerable are substantially higher than the normal
average value 1 expected for the random model introduced above.

The variations we observe in the resulting partitioning need not be strictly interpreted on the base
of the multinomial model: while the latter describes noise from one particular process, variations in link
weights can also do away with systematic biases from other sources, such as geographical variations in
market share, or conspicuous deviations of fij, the observed fractions, from the “real” likelihood f;;. It
is in this spirit that we can understand increases in R as the result of a more reliable network.
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Table S1. Partition differences to the administrative regions, for alternative algorithms.
Clustering indices and numbers of partitions are consistent, i.e. qualitatively independent of the
algorithm, but Combo provides the highest modularity scores. Due to reasons of data access we were
not able to execute the alternative algorithms for the France data set.

R R, | Combo Louvain Greedy Spectral
France 0.860 0.985 - - -
UK 0.809 0.955 0.904 0.948 0.947
Ttaly 0.883 0.957 0.954 0.957 0.961

Belgium 0.819 0.932 0.935 0.931 0.931
Portugal 0.677 0.885 0.865 0.885 0.889
Ivory Coast | 0.739 0.870 0.853 0.885 0.881
Saudi Arabia | 0.794 0.904 0.893 0.899 0.899

F Fr
France 0.076 0.900 - - -
UK 0.107 0.772 0.558 0.741 0.731
Ttaly 0.063 0.647 0.624 0.633 0.675

Belgium 0.101 0.647 0.655 0.640 0.621
Portugal 0.203 0.697 0.657 0.712 0.695
Ivory Coast | 0.154 0.505 0.460 0.592 0.573
Saudi Arabia | 0.117 0.606 0.560 0.591 0.544

VI logy,n
France 14.12 0.676 - — -
UK 12.21 1.322 2.432 1.477 1.493
Italy 7.79 1.349 1.408 1.464 1.233
Belgium 9.20 1.538 1.549 1.608 1.720

Portugal 11.08 1.465 1.819 1.572 1.468
Ivory Coast 10.19 2.054 2.326 1.952 2.113
Saudi Arabia 8.98 2.036 2.262 2.264 2.561

Num. regions
France 22 21 - - -
UK 11 16 13 14 15
Italy 21 21 21 23 21
Belgium 11 12 13 12 14
Portugal 5 7 7 6 8
Ivory Coast 19 11 11 10 10
Saudi Arabia 13 12 12 12 16
Modularity
UK - | 0.6206 0.5764  0.6140 0.6125
Italy - | 0.7224 0.7218  0.7222 0.7215
Belgium — | 0.7423 0.7421  0.7417 0.7388
Portugal - | 0.4904 0.4451  0.4702 0.4874
Ivory Coast - | 0.3743 0.3638  0.3699 0.3702
Saudi Arabia - | 0.4803 0.4734  0.4797 0.4778
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Figure S1. Cluster overlap index R comparing the noiseless partitions with partitions
having different levels of noise, for Belgium and Portugal. For each noise level w we produced
10 realizations of the perturbed network. Markers and error bars denote the means and standard
deviations of these realizations, respectively. Up to a noise level of 1, there is practically no difference in
the produced partitions. For higher noise levels, R drops lower in Portugal than in Belgium because of
the difference in spatial resolutions n.
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Figure S2. Partitioning of Portugal with different levels of noise. With increasing noise, pairs
of partitions start to merge together. One can also notice the appearance of small disjoint “islands”.
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Figure S3. Partitioning of Portugal with different algorithms.



