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1. LIMITATIONS OF RAW COUNTS IN DIFFERENTIAL ANALYSIS

Several groups have proposed methods for detecting differentially expressed genes by directly comparing
fragment counts for each gene in two conditions, rather than assigning these “raw” counts to transcripts
and then comparing the inferred gene expression levels. We show here that for genes with multiple isoforms,
changes in raw counts between conditions do not necessarily imply a change in expression and vice versa.

Under the simplest multinomial model of RNA-Seq, the expression level' of transcript ¢ in condition a is
estimated by:
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where X7 is the number of fragments that unambiguously map to transcript ¢, n, is a normalization term for
the size of the library for condition a (for example, the total number of fragments mapped in condition a), m
is the length of the sequenced fragments, and [, is the length of the transcript. We abbreviate I, = I, + m — 1
(also known as the “effective length” of t). Because the length of a transcript is a static feature that does
not change between conditions, the following proposition is trivial:

Proposition 1. The fold change in estimated expression of transcript t between conditions a and b is equal
to the fold change in the number of fragments originating from that transcript:
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We often wish to calculate the fold change in expression not just for a single transcript, but for a group

of k > 2 transcripts G = {t1, ..., tx}. The expression level of this group in a condition is the sum of the
expression levels for the transcripts in the group:
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That is, in order to calculate the fold change in G, we must know how many fragments came from
each transcript. Typically, these counts are computed by simple inspection of fragment alignments against
a genome or transcriptome: fragments that uniquely align to a single transcript can be unambiguously
attributed to that transcript. However, in the human genome and many others, most genes are alternatively
spliced, and thus a large fraction (potentially the vast majority) of reads will align to more than one transcript
[6]. While transcript-level counts may not be directly computable, gene-level counts often are. That is, a
fragment that aligns to a constitutive exon may have come from one of several alternative isoforms of a gene,

ITechnically by “expression level” we mean relative abundance, and although the two may be interpreted differently the

terms have been used interchangeably in previous RNA-Seq literature and we adopt that slight abuse of terminology as well.
1
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but there is no question that the fragment came from that gene. A number of methods thus estimate a
gene’s expression as:
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where [, is the length of a “representative” model for the gene. Popular constructions for a representative
model include taking the union of all exonic bases in the gene, or restricting to the set of all constitutive.
We term the former the “exon-union” model and the latter the “exon-intersection” model (main text Figure
1). We show that a fold change in fragment counts based on either of these approaches is not equivalent to
fold change in the expression of G.

Let the number of fragments originating from any transcript in G' in condition a be written X¢&, and the
number of fragments counted under the exon union model be U(X&). Similarly, I(X &) represents the number
of fragments counted for G under the exon-intersection model. For simplicity, consider the case where the
libraries for condition a and b contain an equal number of fragments. The fold change in expression of G is
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Under the union counting scheme, the estimated fold change is accurate when
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Since the union scheme excludes no exons, and thus no fragments from the count, the above is equivalent to
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The above equation is satisfied for all values of X and Xg when the effective length of all transcripts in G
is one, which is the case when the fragments are always the same length as the transcripts being sequenced.
While this is sometimes the case for small RNA sequencing experiments, current read lengths (< 150bp)
are much shorter than most mRNAs. The equation may also be satisfied for certain assignments of Xi’ and
thi regardless of transcript length, but for most comparisons, a change in gene-level counts under the union
model does not equal the underlying change in expression.

The derivation that changes in total fragment counts under the intersection counting scheme (written
I(X§) and I(X 3)) are not equivalent to changes in gene expression proceeds similarly to the argument for
the union scheme. The changes in total counts are equivalent to changes in gene expression only when
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A change in counts under exon intersection, like the union model, may be drastically different than the
change in true gene expression, and may even indicate fold change in the opposite direction. This problem
is illustrated in Figure 1.

The discrepancy between change in count and change in expression clearly depends on the “geometry”
of the gene in question. The length of each isoform and the specific fragments that fall on constitutive as
opposed to unique exons determine the expression of the isoforms and the gene. The discrepancy between
change in count and change in expression for a gene is driven by isoform switching, rather than differential

Nature Biotechnology: doi:10.1038/nbt.2450



Single isoform
perturbation

SUPPLEMENTAL MATERIAL

Rotation of isoform
expression levels

Shift all expression
to shortest isoform

p =0.99 s P=032 s p=-045

log fold-change
(union count)
)
L1
)
L1
)
L1
=

-6 — -6 — -6 — L)
T T T T 1T 1 T T T T 1T 1 T T T T 1T 1
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
=  4p=099 61p=035 6 p=-046
c
%g 4— > 4 4
 C
[Shye]
v .= 0 — 0 - 0 —
22 . o
o2 -2 — -2 — -2 — 1
@ s
S -4 — A -4 — -4 — .
= c o o
= -6 — -6 — 2 -6 — A
T T T T 1T 1 T T T T 1T 1 T T T T 1T 1
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
. 6P =099 6 p=086 6p=099
(0]
@E 4 — 4 — 4 —
G o _ _ _
S 2 2 2 g
Q
T 0— . 0 — 0 —
O
“Q:E -2 -2 -2
=] -4 : -4 -4
o0 .
~ -6 — -6 — -6 —
T T T T 1T 1 T T T T 1T 1 T T T T 1T 1
6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6

log fold-change
(true expression)

log fold-change
(true expression)

log fold-change
(true expression)

F1GURE 1. Simulation experiments illustrating the discrepancy between change in gene-
level fragment count and change in gene expression. Each column of plots illustrates a
different perturbation scenario (see Table 1). Left column: MAJOR-ISO, middle column:
ROTATE, right column: SHORTEST-ISO. The top row of plots shows the fold change for
each perturbed gene under the union count model as calculated by HT-Seq/DESeq. The
bottom row shows the fold change in expression as estimated by Cuffdiff 2. Under MAJOR-
ISO, relative abundance of each perturbed gene’s isoforms with respect to one another is
largely preserved, and so the union count scheme recovers the fold change in expression
accurately. However, for the other two perturbation scenarios, there is substantial isoform
switching, which drives changes in overall gene fragment count that do not reflect changes
in expression.

expression. Due to the limited data on the prevalence of this phenomenon in real transcriptomes, it is
difficult to assess the impact of the discrepancy on real experiments. We thus performed a simulation
study using the human transcriptome and three different isoform switching scenarios, described in Table
1. Under the ROTATE scenario, the transcript abundances for a perturbed gene are simply permuted,
leaving the total gene expression unchanged. The SHORTEST-ISO scenario transfers all of the fragments
in a gene to the shortest isoform, resulting in a change in the expression of the gene and all of its expressed
isoforms. MAJOR-ISO selects a random isoform of a gene and up- or down-regulates it, but leaves the
others unchanged, producing a modest shift in gene expression and a mild isoform-switching effect. We then
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quantified the fold change in gene expression using Cuffdiff 2, and the fold change in gene-level counts using
the HT-Seq and DESeq packages, and compared each to the true change in expression. The discrepancy
between the change in count and the change in gene expression is shown in Figure 1. Under the MAJOR-
ISO scenario, the discrepancy is very mild, but for the other two scenarios it is severe. Under the ROTATE
scenario, the permuting of expression levels among transcripts of varying lengths induces a change in the total
number of fragments generated from the gene, leading to the incorrect view that the genes are differentially
expressed. Under the SHORTEST-ISO, the concentration of fragments on the shortest isoform results in an
upregulation of gene expression without an increase in the number of fragments originating from the gene.

In contrast, the estimated expression levels produced by Cuffdiff 2 are highly concordant with the true
changes in all three scenarios. The simulations results are corroborated by a comparison of naive counting
and Cuffdiff 2 estimates on real expression data obtained by both sequencing and microarray technology
(Figure 4). Taken together, these results highlight a fundamental weakness in the approach of estimating
gene expression through raw fragment counts: (probabilistic) assignment of ambiguously mapped fragments
and estimation of individual transcript abundance levels is crucial for estimating accurately the fold change
even of gene expression levels.

2. STATISTICAL METHODS

2.1. Library size normalization. In RNA-Seq the expression measurement for a transcript is a function
of the number of fragments sequenced from that transcript. However, a sequencing instrument produces
a variable number of sequencing fragments in each run. Thus, it is imperative to control for library size
and sequencing depth when comparing the number of fragments sequenced from a transcript or a set of
transcripts. Several methods have been proposed for this purpose. The first and most basic method is to
simply divide each transcript’s fragment count from each library by the total number of fragments sequenced
from that library [11]. However, expression levels calculated by this method may suffer from bias in some
circumstances because RNA-Seq read counts provide only a relative abundance measure. Consider two
libraries with an identical number of fragments, and where all genes but one are equally expressed in both
libraries. If the differentially expressed gene is also very highly expressed (and thus generates a large fraction
of the fragments in each library), all of the other genes in the experiment will exhibit a change in their
fragment count. Excluding the genes in the upper quartile of the fragment count distribution from the total
library size reduces this effect [2]. Additional sources of bias stem from differences in the lower tail of the
count distribution. These can be handled robustly by methods from Anders and Huber [1] or Robinson and
Oshlack [13].

We implemented the geometric normalization method of [1], the quartile normalization method, and the
traditional total count normalization as options selectable by the user, with the geometric normalization
enabled by default in Cuffdiff 2. The geometric normalization method works as follows: in the notation of
[1] the fragment count for each gene i in each library j is computed and stored in a matrix k. The size of
library j is calculated as:

kij
([0 Fa)™

That is, for each gene, we compute the geometric mean of the number of fragments for that gene across
the libraries and a library’s size is taken as the median of the ratios of raw counts to the geometric mean.
We thus transform the values k;; to a count scale that is common to all libraries and controls for differences
in library sizes and biases caused by differential expression at the tails of the count distributions. This
transformation simply involves dividing each value k;; by the appropriate size factor s;.

It is important to note that the final normalized count values for a library depend on the other libraries
used to produce the common scale. For reasons that will become clear below, we first apply the geometric
normalization to each group of replicates for a given condition, producing an “internal” common count scale
for each condition. We then compute the arithmetic mean of these scaled counts for each gene and use
them as input for a second round of geometric mean normalization used when comparing conditions to one
another. The internal scale is used whenever Cuffdiff 2 compares replicates of a condition to each other. The
“external” scale is used when comparing conditions to each other. We denote the internal library size factor
for library j as s; and the external size factor as 1);.

(2.1) s; = median;

Nature Biotechnology: doi:10.1038/nbt.2450



SUPPLEMENTAL MATERIAL 5

2.2. Replicate variability and assignment uncertainty. An RNA-Seq experiment is inherently random
at many levels. First, if biological samples are assayed in repeated experiments, there will be random
fluctuations in transcript abundances even when controlling for experimental conditions. This is known
as biological variability. Second, library construction involves random events, such as fragmentation, so
that even two identical samples prepared for sequencing will differ in representative transcript abundances.
Finally, with current sequencing technologies fragments from the cDNA library are sequenced at random.
The latter two effects are typically termed technical variability, and together all the effects can be termed
replicate variability. Thus, one can associate random variables {C} } e to all transcripts from a transcriptome
T that represent the (random) number of fragments generated from each transcript in a given experiment.
In what follows we assume that if in a sample the abundance of a transcript ¢ is p; and the total number of
fragments generated is IV, then the random variables C; are functions of p, and N.

The most natural and simplest model for RNA-Seq is Poisson. With such a model, the C; are Poisson
distributed so that
e N (pyN)*

k! '

Assuming that the number of fragments sequenced in each experiment is constant, Poisson distributions
for each C} arise naturally if one assumes that fragments are generated according to a multinomial model.
Furthermore, if one assumes that the origin of fragments produced in an experiment can be uniquely deter-
mined, then the parameters for the Poisson distributions associated to transcripts can be easily estimated
from the “fragment counts” which are sufficient statistics. Formally, if x; is the number of observed frag-
ments originating from transcript ¢ in an experiment then the maximum likelihood estimate for the rate
parameter for transcript ¢ is p; = %t. This formula can be easily adapted to the case when replicates have
been performed, in which case the rate parameter is estimated as the average of the fragment counts for the
transcript ¢. Differential analysis with the Poisson model is thus reduced to testing for the difference of two
Poisson distributions [2].

Unfortunately, in practice, the C; are not observed random variables. This is because of assignment
uncertainty, namely the fact that many fragments map ambiguously to different transcripts. Formally, let
F be the set of all fragments. The observed data are, for each f € F, sets Sy C 2T where 27 denotes all the
possible subsets of transcripts. We let S = {Sy}scr. In a given experiment all that one can hope to recover
are posterior distributions Y; = p(C¢|S) where S are the observed fragment mappings.

Thus, although we continue to assume that fragments are generated according to Poisson models, i.e., the
C} are Poisson random variables, for the purpose of differential analysis we model the observed counts by
miztures of Poisson random variables that incorporate our uncertainty in estimates of the underlying rates
where the mixtures are given by

(2.2) P(Cr=k) =

—x¢ .k
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The summation in Equation (2.3) does not necessarily result in a simply described distribution. However
we note that it is a mixture of Poisson random variables, and it is therefore convenient to approximate the
discrete posterior distributions for the Y; with continuous Gamma distributions so that we obtain Gamma-
Poisson mixtures. Specifically, if m; is the first moment of the distribution Y; and ; the second central
moment then we fit the posterior distribution for ¥; by a Gamma distribution I'(r, §) where

(2.4) red = my, 6 = .
Fitting the moments we obtain

2
m
(25) Tt = 775’ Ht — ﬂ
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The continuous mixture of Poisson random variables where the mixing rates are gamma distributed is a
negative binomial distribution which we parametrize by NB(rs,p;) where r; is as above and

1 m
(2'6) Dt !
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The mean of N B(r,p) is T(lgp ) and the variance is T(;p ). Therefore, we have that the mean of the mixture

is my, and the variance is m; + ;.

Nature Biotechnology: doi:10.1038/nbt.2450



6 C. TRAPNELL, D. G. HENDRICKSON, M. SAUVAGEAU, L. GOFF, J. L. RINN, AND L. PACHTER

This shows that the negative binomial distribution, although useful for modeling biological variability [5],
can serve a different purpose in RNA-Seq. As we have shown above it emerges naturally when accounting for
the uncertainty in fragment counts due to ambiguously mapping fragments even when biological variability
is not explicitly modeled. In the following section we describe how to extend the approach outlined above to
the case where biological variability is also modeled. Specifically, in following [1], we review how the negative
binomial distribution provides a better model for counts that captures biological variability (Section 2.2).
For completeness, in Section 2.3 we describe in more detail how we estimate the posterior distributions of
counts and their moments. We explain the connection to isoform abundance estimation algorithms such as
[7, 8, 15, 12] and describe an approach to obtaining the moments of the posterior distributions of counts that
avoids the need for computing the distributions explicitly. Then, in Section 2.4, we show how to incorporate
assignment uncertainty in this more general setting. Instead of modeling mixtures of Poisson distributions
with negative binomial distributions, we are lead to mixtures of negative binomial distributions that we
model with beta negative binomial distributions.

2.3. Modeling cross-replicate variability in transcript-level counts. In this section we generalize the
previous section to the case when we assume that the probability distributions C} are negative binomial
rather than Poisson. Since the Poisson distribution is a specific instance of a negative binomial distribution,
the results of the previous section reduce to a special case of methods at we describe in this section. The use
of the negative binomial distribution is motivated by the overdispersion in counts observed in experiments,
and that can be attributed to biological variability.

a Poisson Real fit Simulated fit
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FI1GURE 2. Simulated and real fragment count overdispersion, based on three replicates each.
Thus, we adopt the approach of [1] in assuming that the number of fragments x{ in replicate j from a
transcript ¢t can be modeled by a negative binomial distribution:
; o2
(2.7) 2l ~ NB(id, 0f).

To estimate the variances for these distributions, we mimic the procedure in [1] and fit a generalized linear
model (GLM) of the gamma family through the cross-replicate (mean, variance) pairs for the gene-level scaled
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fragment counts computed during the inspection phase of the algorithm. This GLM is used to parametrize
the negative binomial distribution that models each gene’s cross-replicate fragment count.

The GLM fit is obtained using the local regression package LOCFIT [9], from which we obtain a function
Ve (N) for each condition F that yields the predicted variance across replicates in fragment counts given
a value for the mean counts N across replicates. Figure 2 shows the extent of overdispersion in our own
dataset (panel a) and our ability to simulate a similar pattern of overdispersion (panel b). The green lines
illustrate the extent of dispersion expected with the Poisson model (where the variance equals the mean),
and the red and orange curves are the functional fit we produce for the real and simulated data respectively
using the procedure outlined above.

When a condition is represented by only a single replicate, the variability model is estimated from a
different condition that is represented by more than one replicate. Each single-replicate condition uses the
variance model borrowed from the condition with the most replicates. When all conditions have only a
single replicate, we conservatively treat the conditions as replicates of each other [1]. In such a scenario, the
implicit assumption is that most genes are not differentially expressed.

2.4. Estimating fragment count distributions. We use the likelihood function originally proposed by
Trapnell et al., [15] with the improvements introduced by Roberts et al. [14] in order to estimate frag-
ment counts of individual isoforms. Transcript abundances are deconvolved for a condition by pooling the
cDNA fragment alignments from all replicates into a single computation, with their contributions to the full
likelihood scaled appropriately by the library depth factors introduced above. We also utilize the “rescue”
strategy of Mortazavi et al. [11] to account for fragments that map to multiple to multiple loci.

Together, this corresponds to fragment count estimation based on maximum likelihood estimation from
the complete likelihood function:

(2.8) Lipls) = (TI85 ) (11 I D et

geq g€G fEF, teg

where S are the fragment alignments as described above, and p = {p; }+er are the transcript relative abun-
dances. Asin [15], the model partitions the fragments and transcripts into non-overlapping loci G = ¢1, ..., gk,
and separates each transcript-level abundance parameter p; into two parameters 3, and 7, such that
pt = Bgye. The parameter 3, is simply the probability that a fragment drawn at random from the li-
brary falls in the locus g. The parameter ; is the probability that a fragment from locus g containing the
set of transcripts T originated from transcript ¢ € T,. In the above equation, F, C F'is the set of fragments
that map to locus g, and Q(f,t) is a constant that incorporates a number of per-fragment normalizing effects
modeled by the algorithm. It is defined as:

1 b(ta €5/ (taf)ae3’ (taf))
2.9 Q(f,t) = — my-
29 U= ™ T B L)
where sy is internal size factor for the fragment’s library and (Qf,t) =01if t ¢ Sy.

The term W captures the fragment bias parameters introduced by Roberts et al. [14].
In that work, Cufflinks was used to quantify transcript expression by iteratively refining bias parameters
and transcript abundances to jointly maximize the likelihood function via coordinate ascent. However,
because the marginal increase in likelihood dropped dramatically after just two iterations of the ascent, the
algorithm terminates there for performance reasons. The scaling constant m¢ allows Cuffdiff 2 to implement
the “rescue” strategy of [11]: fragments that map to n > 1 loci are initially weighted m; = % As with the
bias model, m¢ is updated after each pass of maximization of the abundance parameters. This is equivalent
to updating estimates for transcript abundances taking into account fragments mapping ambiguously to
different loci with a single round of the EM algorithm. Finally, X, = > fer, My #7 where 7y is the
external size factor for f. This deconvolution yields for each transcript an estimate of its relative abundance
in the sample p;.

As discussed in Section 2.1, incorporation of assignment uncertainty in differential analysis involves the
determination of the posterior distributions of counts. To do this, in the notation of [15], we compute 7;
for each transcript by the EM algorithm. Next, we calculate the posterior expectation for the number of
fragments originating from each transcript. We treat each fragment as a set of Bernoulli random variables,
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one for each transcript in S;, each with success probability:
1Q(f:t)
Ziesf %Q(f,1)
The posterior expectation on the fragments assigned to ¢ in locus g can then be computed as ) feF, p}

by the law of iterated expectation. We track the variance and covariance on the posterior distribution for
assigned fragments between transcripts ¢ and j in a matrix ¥ computed as:

py(l—pf) ifi=j

(2.10) Py =

(2.11) bij= Y Vg, = o

fEF, —P}p} ifi#j
2.5. Mixing negative binomial distributions. Having captured both the cross-replicate variability and
the uncertainty in transcript fragment counts for each replicate due to ambiguously mapped fragments, we
are now ready to combine both. We propose that each transcript abundance p; can be modeled by a variable
X that is beta negative binomially distributed. The beta negative binomial can be interpreted as a mixture
of negative binomials. The parameters of the beta negative binomial, r,a,and 3, are determined by solving

three equations. For notational simplicity, we let p = af‘f_gil and we set
(2.12) A= XA
(2.13) B =Vg(Xy) 4
(2.14) C =47,
The equations that must be solved are:
1—
(2.15) rd=p) gy
p
r(1—p)
af A* C

(2.17) @t (atBrl) BI =

Equations 2.15 and 2.16 define the negative binomial distribution for the mean value of the parameter
p that is beta distributed so that it matches the overdispersion estimated for that estimated count value.
Equation 2.17 is based on the fact that we would like the mean value of the negative binomial distributions
to vary according to the fragment assignment uncertainty captured by 1/1;?7 ;- That is, we would like to have

(2.18) Var [T(lp_p)} =C.

By Taylor approximation,

(2.19) Var [7«(1—;7)] ~r? (i) Var|p|

p
from which we obtain Equation 2.17.
Equations 2.15 and 2.16 can be used together to derive that

2
(2.20) r= B{ 1
and

A
2.21 = —.
(2.21) p=5

Note that r must be greater than zero, so we are implicitly assuming that B > A which is equivalent to
assuming that there is overdispersion. If B = A, the cross-replicate variance equals the mean, and we can
simply revert to mixing Poisson distributions and use the negative binomial instead of the beta negative
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binomial. Similarly, if there is no uncertainty in read counts the beta negative binomial distribution for a
transcript collapses reduces to a negative binomial distribution, making our method equivalent to previous
count-based differential expression approaches when used for transcriptomes without alternative splicing or
paralogous genes. We now solve for 8 as follows. Using the first equation, we have that

A
2.22 =1-—"3.
(2:22) @ a5 "
Plugging this into the Equation 2.17, and using the formula for r, we obtain a cubic equation from which
we can solve for § and thus obtain the remaining parameters of the beta negative binomial distribution:

C s
_Eﬂ +
4AC  4C
A _ 2
(a+ 252 -5 )+
542C  10AC 5C
_Aaip_t 2 2
( + TR 7 5 ) B+
243C 6A%C . 6AC 20 _
B4 B3 B2 B
The distributions for the fragment counts for each transcript allow us to estimate the significance of observed
changes between two or more conditions.

0.

2.6. Estimating fragment counts for genes and other groups of transcripts. A posterior distribution
on the relative abundance a transcript ¢ will allow us to test for significance in observed changes in the
assigned fragment count between two or more conditions. Because we are interested not just in differential
analysis transcript-level expression but also in gene-level differential expression analysis, we must estimate
the distribution on expression pg for a group of transcripts G = t1, ..., t,,, (e.g. the alternative isoforms of a
gene). Given the posterior distributions Xy, , ..., X; , the total expression for G is

(2.23) Eloc] = 3 Bl ~ 3 ——X,,.

Ml
t,eG teq I
This expression estimate for G has variance

1
(2.24) Var[pg] = Z mCOV[Xt“th].
tit;eG T

Like the variance, covariance in assigned fragment counts between two transcripts t; t; is a result both
of fragment mapping uncertainty and of true biological covariation across replicates. Our method does not
analytically model the latter, which would likely require many replicates. To estimate the covariance in the
number of fragments assigned to each transcript, we simulate the generation and subsequent assignment
of sequencing fragments under our model. For each transcript, we draw a fragment count from a negative
binomially distributed random variable, and then assign those fragments to all the transcripts according
to the uncertainty matrix . The negative binomial distribution for a transcript is parametrized such that
it has a mean number of fragments equal to our maximum likelihood estimate and variance equal to the
cross-replicate fit described in Section 3.3. To assign the fragments, we treat them as random variables
drawn from a multinomial distribution parametrized by . The assigned count samples are then used to
empirically estimate the variance-covariance matrix for fragment count assignment in each gene. By default,
1,000 rounds of fragment generation and assignment are performed for each gene (this is a parameter can
be set as an option by the user).

2.7. Testing for differential expression. Estimating the variance and covariances for the number of
fragments assigned to each transcript allows us to approximate the posterior distribution for the expression
of G and thus perform gene-level differential expression analysis. We test for significance of observed changes
exactly as in [15]. Briefly, the log-transformed ratio of expression constitutes a test statistic that is follows a
standard normal distribution when divided by the variance of the transformed ratio. We perform a two-sided
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test for significance against a null hypothesis that the ratio is unity (no change). In the case when a gene
or transcript has zero fragments in one condition, we perform a one-sided test using the estimated posterior
distribution for that gene or transcript directly. This same method is used to test for differential expression
at the transcript level.

We are also interested in changes in the relative abundances of transcripts from a given group. For
example, changes in relative abundance among transcripts that share a common transcription start site
(TSS) constitute differential splicing within that group.

We write the discrete distribution of relative transcript abundances as k. Let &4, 2P denote the relative
abundances for a set of transcripts in conditions A and B, respectively. Then from the delta method we have
that the square root of the Jensen-Shannon divergence d = +/JS(k4, #F) has variance approximated by

(2.25) Var[d] =~ (vd)"2(vd),

where ¥ is a block-diagonal variance-covariance matrix formed by the individual 4 variance-covariance ma-
trices $4 and ©5. When normalized by its variance, this test-statistic follows a Gaussian distribution that
is truncated below zero, allowing a one-sided significance test on observed changes in relative abundance.
This test was used in single-replicate comparisons in [15], but we found that with fewer than five replicates,
Y has a high error rate and the test consistently produced a higher than expected false discovery rate.

Cuffdiff 2 adopts a sampling-based approach to evaluate observed shifts in isoform abundance against the
null hypothesis of no shift. Under the null hypothesis, 44 and #? are assumed to be drawn from the same
distribution, which we take to be a multivariate normal. First, we generate 100,000 random variates from
the multivariate normal N (&4, f]A). We then compute the sampling distribution of the JS distance taken
between these points by computing it on 100,000 random pairs. We can then estimate a p—value and reject
the null hypothesis that the observed changes in relative abundance among a gene’s isoforms actually arose
by chance, having been drawn from this sampling distribution. Because N'(k?, $B ) may better estimate the
null distribution than N(&4, ﬁJA)7 we repeat this procedure using 4“4 and $4. We then take the mean of the
two obtained p-values as the value for the observed change in the gene’s relative isoform abundances.
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3. ASSESSING CUFFDIFF 2 ACCURACY

This section describes experiments demonstrating the overall accuracy of Cuffdiff 2, including its robust-
ness in situations where count-based methods fail to recover changes in expression.

3.1. Comparison with expression microarrays. This section provides comparisons between Cuffdiff 2
fold change estimates across conditions in our HOXA1 knockdown experiment, and independently obtained
fold change estimates using microarrays. Note that the same number of replicates (3) were used in each
condition in both the arrays and the sequencing.

10 10
>5 =5 -
‘@ ‘@
c c
2 2
£ £
> >
Y Y
< <
g0 - g0 -
ke] k<]
-5 - -5 -
[ [ [ [
-5 0 5 10 -5 0 5 10
logs (Cuffdiff FPKM) logs (Cuffdiff FPKM)

F1GURE 3. Intensity of Agilent Expression microarray probes compared against Cuffdiff
2-derived FPKM values in the scramble control (left) and the HOXA1 knockdown (right).
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FIGURE 4. A comparison of Lung fibroblast gene expression change after knockdown of
HOXAT1 assessed by microarrays and RNA-Seq. (left) The vertical axis shows the change in
each gene’s expression (shown as an arrow) as calculated by HT-Seq/DESeq (which marks
the tail of each arrow) and as calculated by Cuffdiff 2 (which marks the head of each arrow).
The solid line indicates perfect concordance between the array measurement and the RNA-
Seq measurement. (right) In the fibroblast data, the difference between the fold change
estimates by Cuffdiff 2 and union count is worse at lower levels of expression.
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FIGURE 5. Enlarged version of Figure 3b. Gene expression by isoform deconvolution (tail
of arrows) instead of by fold-change in gene-level fragment counts (head of arrows) improves
agreement with microarrays. Genes shown are those where Cuffdiff and intersection-count

fold changes are most discrepant (1% tails).
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FIGURE 6. Cuffdiff 2 is highly concordant with other methods for differential analysis. (top
left) Fold changes in gene expression in response to loss of HOXA1 in HLFs as measured by
Cuffdiff 2 compared against those from the union count method. (top right) Fold changes
in gene expression between HLFs and HESCs as derived by Cuffdiff 2 and union counts.
However, the methods tend to disagree in genes with substantial changes in relative iso-
form abundance. Disagreement in fold change versus isoform switching as measured by the
Jensen-Shannon distance between hLLFs before and after HOXA1 knockdown (bottom left)
and between hLFs and hESCs (bottom right). Bottom panels show genes with FPKM > 10
and normalized gene count > 100 to ensure reliable quantification of all isoforms.
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3.2. Comparison with MAQC gPCR data. The Microarray Quality Control (MAQC) project [10]
provided a large sample of gene expression measurements for two commercially available RNA samples,
the Universal Human Reference (UHR) and brain (HBR). The MAQC project assayed gene expression for
approximately 1,000 genes by both TagMan qPCR and a variety of microarray platforms, and the MAQC
samples were later assayed by RNA-Seq by several groups [2]. Here, we demonstrate that Cuffdiff 2 reports
fold changes in expression between the samples that are highly concordant with the qPCR data. Furthermore,
Cuffdiff 2 performs a differential analysis of these samples at competitive accuracy with the popular count-

SUPPLEMENTAL MATERIAL

based tools DESeq and edgeR.
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FiGUre 7. (left) The MAQC standard samples Brain and UHR as assayed by TaqMan
qPCR. Following the methodology of [2], genes with a log2 fold change of greater than 2.0
were declared differentially expressed (DE) by qPCR, while genes with a log2 fold change of
less than 0.2 were declared not DE. Genes with changes between these thresholds were said
to have indeterminate DE status and not included in the true positive and true negative
sets. (right) Cuffdiff 2 log2 fold changes in FPKM compared against qPCR fold changes.

Plots show genes with two or more isoforms.
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FIGURE 8. (left) ROC curves for Cuffdiff 2 and popular count-based tools for differential
gene expression analysis for RNA-Seq. (right) False discovery rate for the same tools as a
function of alpha, with the black line indicating the target FDR. Plots show genes with two
or more isoforms.
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3.3. Comparison with Griffith qPCR data. In their paper describing the RNA-Seq analysis platform
ALEXA-Seq, Griffith et al. [4] analyzed MIP101, a human colorectal cell line sensitive to fluorouracil (5-FU),
and compared to a resistant version (MIP/5FU). The authors reported a global disruption of splicing by
comparing RNA-Seq read densities in alternative splicing features (e.g. cassette exons or alternative donor
sites). The authors validated observed differential splicing events via an extensive qPCR study. Here, we
demonstrate that Cuffdiff 2 recovers changes in isoform expression levels from the Griffith RNA-Seq data
that are highly concordant with the qPCR data, similar to two independent tools for isoform-level RNA-
Seq analysis. RSEM quantifies isoform expression levels using an EM-based approach similar to Cuffdiff 2,
and ALEXA-Seq quantifies isoforms by comparing read densities in splicing features that distinguish them.
RSEM]8] and Cuffdiff 2 were run on UCSC knownGenes from hgl9. ALEXA-Seq values were taken directly
from [4].

10.0 — e -‘.I:":,

Cuffdiff 2 FPKM

\ \
1e-10 1e-08
gPCR relative initial concentration

F1GURE 9. Isoform-level expression estimates produced by Cuffdiff 2 versus isoform-specific
qPCR data for the MIP101 and MIP5FU datasets. Points are colored by the decile of
estimated number of fragments mapped to each transcript.
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FIGURE 10. RNA-seq data described in Griffith et al. [4] analyzed by RSEM, Cuffdiff 2,
and ALEXA-Seq. (a) Concordance of transcript-level log2 fold change in expression between
the two Griffith et al. samples as measured by RSEM and Cuffdiff 2. The plot is faceted by
decile of sequencing depth. (b) Concordance in fold changes at the gene level. Concordance
of fold changes against the exon-specific qPCR probes from the Griffith et al. data as
measured by (c) Cuffdiff 2, (d) RSEM, and (¢) ALEXA-Seq. For RSEM and Cuffdiff 2, fold
changes were determined by summing the expression of isoforms targeted by each probe and
computing fold changes in the sum. These sums were compared against the qPCR-based
fold changes for that amplicon. All points colored by expression decile (as determined by
Cuftdiff 2 FPKM)
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3.4. Empirical estimation of false discovery rates. Here, we provide an empirical estimate of the true
false discovery rate of Cuffdiff 2 by running it on the MAQC datasets and our fibroblast data in ways that
are both consistent and inconsistent with the design goals of these experiments. As expected, Cuffdiff 2
returns very few differentially expressed genes and transcripts, as well as few genes under going differential
relative isoform output, in the “nonsense” contrasts. All values produced with a target FDR of 5%.

Group A Group B Genes Genes Genes Transcripts | Differential Promoter CDS
splicing switching switching
(DESeq) | (edgeR) | (Cuffdiff 2) | (Cuffdiff 2) | (Cuffdiff 2) | (Cuffdiff 2) | (Cuffdiff 2)
UHRI1-7 HBR1-7 14,391 14,905 9,559 7,033 116 228 107
HBR1,UHR2,HBR3, | HBR2,UHR3,HBR4, 0 0 0 0 0 0 0
UHR4,HBR5,UHR6 UHR5,HBR6,UHR7
HBR4,UHR4,HBRS5, HBR1,UHR3,HBR6, 0 0 0 0 0 0 0
UHR6,HBR7,UHR2 UHR1,HBR2,UHR5
HiSeq-A1KD1-3 HiSeq-SCR1-3 7,690 5,034 5,862 5,189 66 7 98
HiSeq-A1KD1 HiSeq-SCR1 1 70 0 0 1 0 3
HiSeq-SCR2 HiSeq-A1KD2
HiSeq-A1KD3 HiSeq-SCR3
HiSeq-SCR1 HiSeq-A1KD1 1 73 0 0 1 1 0
HiSeq-A1KD2 HiSeq-SCR2
HiSeq-A1KD3 HiSeq-SCR3
HiSeq-SCR1 HiSeq-A1KD1 0 0 0 0 3 1 2
HiSeq-SCR2 HiSeq-A1KD2
HiSeq-A1KD3 HiSeq-SCR3
MiSeq-A1KD1-3 MiSeq-SCR1-3 5,875 6,805 2,800 2,429 56 21 43
MiSeq-A1KD1 MiSeq-SCR1 0 0 0 0 0 0 0
MiSeq-SCR2 MiSeq-A1KD2
MiSeq-A1KD3 MiSeq-SCR3
MiSeq-SCR1 MiSeq-A1KD1 0 0 0 0 0 0 0
MiSeq-A1KD2 MiSeq-SCR2
MiSeq-A1KD3 MiSeq-SCR3
MiSeq-SCR1 MiSeq-A1KD1 0 0 7 22 0 0 0
MiSeq-SCR2 MiSeq-A1KD2
MiSeq-A1KD3 MiSeq-SCR3

TABLE 1. Empircal FDR assessment. Columns indicate differentially expressed genes and
trancscripts, differentially spliced genes, and those undergoing promoter or CDS switching.
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3.5. Sequencing library simulator. Simulations were conducted through a set of custom scripts to match
as closely as possible the properties of our real lung fibroblast RNA-Seq data. The simulator accepts three
input files along with various options and parameters to be used during the run. The first input file is a
set of annotated transcripts, which for all of our tests was the UCSC protein coding transcripts annotated
in the human genome (hgl9). The second input file is an assignment of relative abundances to transcripts
in the annotation file. The third file is a table describing cross-replicate variability in fragment counts as a
function of abundance. Key parameters for the simulator include the length of reads to generate, the mean
c¢DNA fragment length and its variance, and the number of cDNA fragments to sequence. The simulation
framework generates replicate libraries for the input condition and also creates libraries for a “perturbed”
condition, where a random selection of transcripts are up- or down-regulated. The simulation framework
reports the degree to which each has been modified so that Cuffdiff 2’s accuracy can be assessed exactly.

The above simulator produces sequencing libraries as follows. First, the expected number of fragments
from each transcript is calculated based on the number of total fragments sequenced in the library F' and
that transcript’s abundance (given in FPKM and expressed here as p;).

l~t T
(3.1) ElX] = pi (1000) ' (1000000)

where [, is the effective length of the transcript. The expected number of fragments from transcript ¢ is
used in conjunction with the cross-replicate variability model to specify the actual number of fragments that
will originate from ¢ in the simulated library. The input file mentioned above is then used to parametrize a
random number generator that returns variates from a negative binomial distribution N(r,p) where

E[X,)?
" E[X,] — Va(Xy)
_ E[XY
P v

and Vg(X}) is the predicted cross-replicate variance in fragment counts for a transcript with mean fragment
counts X; in condition E. The simulator uses a variate returned by the generator as the actual number of
fragments (appropriately scaled by total library size) generated for a transcript ¢ in the simulated library.

In each library, cDNA fragments are generated fragment start position uniformly at random within the
transcript’s effective length, then selecting a fragment length from a normal distribution with mean of 180bp
and variance of 50bp, similar to that in our real fibroblast data. For all test except the read length series
described below, two 100bp reads for each fragment were then recorded into an alignment file readable by
Cuffdiff 2. We thus base the simulation analysis that follows on a set of perfectly aligned reads, removing
the confounding effects of errors in mapping fragments to the genome on differential expression accuracy.

The simulator generates a user-specified number of replicate libraries for the control condition libraries as
specified above. To generate libraries for the perturbed condition, the underlying expression levels p; for each
transcript are modified before simulated sequencing in one of several ways. The user chooses the number of
genes that are to be selected for perturbation. The user then chooses how the genes will be perturbed. For
example, all isoforms of a gene may be multiplied by the same up- or down-regulation constant. Alternatively,
one transcript of an alternatively spliced gene may be altered, while the others remain unperturbed. The
simulation framework supports the perturbation modes listed in Table 1.
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UNIFORM Expression for all transcripts of a gene
are multiplied by the same amount

ROTATE Expression levels are permuted among
transcripts

SHORTEST-ISO Expression for all isoforms except the
shortest are assigned to be zero. The
shortest isoform’s expression is set to
the sum of the gene’s isoforms control
condition expression level.

MAJOR-ISO A single isoform is selected at random
from the gene and multiplied up or
down by a constant ¢ € [a,b], chosen
at random. The direction of regula-
tion is chosen at random. The user can
specify a and b, and we use defaults of
a=2,b=10.

MULTI-ISO All isoforms of a gene are perturbed (in-
dependently) as described in MAJOR-
ISO

SPECIALIZE The fragments of a gene are all assigned
to a randomly selected isoform, and all
other isoforms are assigned zero expres-
sion. The selected isoform’s expression
is recalculated as the (normalized) gene
fragment count divided by the selected
transcript’s length, resulting in change
in gene expression but minimal change
in gene-level fragment count.

TABLE 2. Simulator modes discussed in this study.
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F1GURE 11. Cumulative densities of per-gene isoform switching observed in the contrasts
performed in this paper. Isoform switching was measured as the Jensen-Shannon distance
between the relative abundances of isoforms of each gene as estimated in the conditions in
the contrast.
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Once libraries were generated for each condition, the simulated alignment files were provided to Cuffdiff
2 to assess the software’s accuracy in calling differentially expressed and regulated genes and transcripts.

3.6. Assessment. We use three metrics to assess performance:

Precision (P) Fraction of genes Cuffdiff 2 calls signif-
icant that were truly perturbed in the
simulation

Recall (R) Fraction of genes that were perturbed
in the simulation that Cuffdiff 2 calls
significant

TABLE 3. Metrics for assessing Cuffdiff 2 accuracy in silico.

Each of these statistics is also calculated at the transcript level to assess Cuffdiff 2’s performance in
calling differentially expressed genes and transcripts independently. Since Cuffdiff 2 also calls differentially
spliced T'SS groups and identifies genes undergoing promoter switching, the simulation framework calculates
precision, recall, and F-score to measure performance of these statistical tests as well.
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3.7. Tests. The following figures describe the results of our simulation studies:

3.7.1. Single isoform perturbation. The MAJOR-ISO scenario perturbs a single isoform (not necessarily the
major one) of each gene, resulting in minimal isoform switching.
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FIGURE 12. minimal isoform switching: Gene-level fold changes in perturbed genes as mea-

sured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by sequencing
depth in the experiment.
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FIGURE 15. Minimal isoform switching: Gene-level false discovery rate as a function of
alpha, with the black line indicating the target FDR. Plots are faceted by sequencing depth
in the experiment.

850,000 2,550,000 4,250,000
20 — s
D)
- %
10 — -
0 T .
— : 3 . :
8’; s —-10 — i . .
c X 5 i‘;
G o :
< - 20 —
o
o g 8,500,000 12,750,000 17,000,000
L5 20—
S5 . )
90O 10— :
0 — 5 >
-10 — : 3
}' K .
_20 —
T T T T ™ T T T 1 T T T T
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20

log2 fold change (true expression)

FIGURE 16. Minimal isoform switching: Transcript-level fold changes in perturbed genes
as measured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by
sequencing depth in the experiment.
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different sequencing depths.
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FI1GURE 19. Minimal isoform switching: Transcript-level false discovery rate as a function
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depth in the experiment.
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FIGURE 21. Minimal isoform switching: Error in estimation of change in gene expression as
a function of isoform switching (measured as the Jensen-Shannon distance between relative
isoform abundances) using Cuffdiff 2 (left) or union count (right)
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FIGURE 22. Minimal isoform switching: Gene-level fold changes in perturbed genes as mea-
sured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by sequencing
depth in the experiment.
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FIGURE 24. Minimal isoform switching: Gene-level precision and recall at different degrees
of replication.
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FIGURE 25. Minimal isoform switching: Gene-level false discovery rate as a function of al-
pha, with the black line indicating the target FDR. Plots are faceted by number of replicates
in the experiment.
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FIGURE 26. Minimal isoform switching: Transcript-level fold changes in perturbed genes
as measured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by
sequencing depth in the experiment.

Nature Biotechnology: doi:10.1038/nbt.2450



SUPPLEMENTAL MATERIAL

800 —| method
7] ~—
(0] /
_‘; 600 — —e— Cuffdiff 2
2
& 400 — —e— Cufflinks EM + edgeR
()
2 200 —
= —o— Cufflinks EM + DESeq
0—
[ [ [ [
2 3 4 5
Number of replicates
* 150 — method
g
2 -— — —e— Cuffdiff 2
‘@ 100 —
3 —
3 \ —e— Cufflinks EM + edgeR
£ 50 —
Lcl‘.s —o— Cufflinks EM + DESeq
0— —e
[ [ [ [
2 3 4 5

Number of replicates
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FIGURE 28. Minimal isoform switching: Transcript-level precision and recall at different
degrees of replication.
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FIGURE 29. Minimal isoform switching: Transcript-level false discovery rate as a function
of alpha, with the black line indicating the target FDR. Plots are faceted by number of
replicates in the experiment.
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F1GURE 31. Accuracy of Cuffdiff 2 in the MAJOR-ISO simulation. Recall and precision of
Cuffdiff 2’s gene, transcript, splicing, and promoter switching tests under varying replication
depths, sequencing depths, and read length.
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3.7.2. Multiple isoform perturbation. The MULTI-ISO scenario perturbs all isoforms of each gene indepen-

dently.
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FIGURE 33. Moderate isoform switching: Gene-level fold changes in perturbed genes as
measured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by se-
quencing depth in the experiment.
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FIGURE 35. Moderate isoform switching: Gene-level precision and recall at different se-
quencing depths.
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FIGURE 36. Moderate isoform switching: Gene-level false discovery rate as a function of
alpha, with the black line indicating the target FDR. Plots are faceted by sequencing depth
in the experiment.
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F1GURE 37. Moderate isoform switching: Transcript-level fold changes in perturbed genes
as measured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by
sequencing depth in the experiment.
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different sequencing depths.
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FIGURE 43. Moderate isoform switching: Gene-level fold changes in perturbed genes as
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degrees of replication.
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of replication.
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FIGURE 46. Moderate isoform switching: Gene-level false discovery rate as a function of al-
pha, with the black line indicating the target FDR. Plots are faceted by number of replicates
in the experiment.
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FIGURE 47. Moderate isoform switching: Transcript-level fold changes in perturbed genes
as measured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by
sequencing depth in the experiment.
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F1GURE 50. Moderate isoform switching: Transcript-level false discovery rate as a function
of alpha, with the black line indicating the target FDR. Plots are faceted by number of
replicates in the experiment.
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FI1GURE 52. Accuracy of Cuffdiff 2 in the MULTI-ISO simulation. Recall and precision of
Cuffdiff 2’s gene, transcript, splicing, and promoter switching tests under varying replication
depths, sequencing depths, and read length.
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3.7.3. Isoform switching. The SPECIALIZE scenario assigns all the abundance of a gene to a single isoform
(not necessarily the major one).
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FI1GURE 53. Heavy isoform switching: Gene-level fold changes in perturbed genes as mea-
sured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by sequencing
depth in the experiment.
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FIGURE 63. Heavy isoform switching: Gene-level fold changes in perturbed genes as mea-
sured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by sequencing
depth in the experiment.
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FIGURE 67. Heavy isoform switching: Transcript-level fold changes in perturbed genes
as measured by union count (top) and Cuffdiff 2 FPKM (bottom). Plots are faceted by
sequencing depth in the experiment.
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F1GURE 68. Heavy isoform switching: Transcript-level true and false positives at different
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3.7.4. Other profiling scenarios. This section contains simulation experiments that examine the impact of
heavy overdispersion among replicates. Also shown are performance results when simulated transcript abun-
dances are derived from a mixed power/exponential rule as used in the FluxSimulator [3].
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FIGURE 73. FDR for gene-level (left) and isoform-level (right) differential analysis with
Cuffdiff 2 and other popular tools under high levels of cross-replicate variability. Overdis-
persion was set to 10-fold higher than the levels observed in our fibroblast experiment across
all ranges of gene expression.
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FIGURE 74. ROC and FDR for gene-level (left) and isoform-level (right) differential analysis
with Cuffdiff 2 and other popular tools under levels of cross-replicate variability similar to
that in our fibroblast data.
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FIGURE 75. FDR of gene-level (left) differential analysis under simulations derived from
abundance assignment policy used by FluxSimulator (right panels).
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FIGURE 76. Performance of transcript-level differential analysis under simulated abun-
dances derived from our fibroblast data (left) and derived from the default abundance
assignment policy used by FluxSimulator (right).
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4. OTHER SUPPLEMENTAL FIGURES
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FIGURE 77. Performance of several approaches for isoform-level differential analysis. (Top
left) True and false positives in the MAJOR-ISO simulation scenario (see below) using the
UCSC hgl9 transcriptome annotation. Cuffdiff 2 and several alternative pipelines that cou-
ple Cufflinks or RSEM transcript fragment count estimates with other count-based tools.
(Top right) rate of false positive DE isoforms per gene as a function of gene splicing com-
plexity. (Bottom left) True and false positives and (bottom right) false positive rates when
using the GENCODE v12 annotation, which contains nearly twice as many isoforms for
most genes as the UCSC hgl9 annotation.
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F1GURE 78. Accuracy of recovered FPKMs in simulation. Cuffdiff 2 FPKM estimates for
genes (left) and transcripts (right) compared against the true values. Error decreases with
expression level for genes (right, blue line), and transcripts (red line). Only multi-isoform
genes are shown.
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FIGURE 79. Scatterplot matrix across replicates of gene level FPKM values in the fibroblast experiment.
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FIGURE 80. Scatterplot matrix across replicates of transcript level FPKM values in the
fibroblast experiment.
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F1GURE 81. Squared coefficient of variation in FPKM values as a function of mean FPKM
across replicates for genes (left) and transcripts (right).
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FIGURE 82. Numerous cyclins (right) and cyclin-dependent kinases (left) are significantly
differentially expressed in response to HOXA1 knockdown. Black bars were declared signif-

icant, while gray bars were not.

Nature Biotechnology: doi:10.1038/nbt.2450

63



64 C. TRAPNELL, D. G. HENDRICKSON, M. SAUVAGEAU, L. GOFF, J. L. RINN, AND L. PACHTER

Promoter
preference

CDS shift

F1cure 83. HOXA1 knockdown induces differential splicing and promoter preference shifts
in hundreds of genes. These shifts often, but not always, involve isoforms of the same gene
that have distinct coding sequences (CDS).
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FI1GURE 84. Isoform-specific gPCR probe designs for genes in Figure 5. Red probes indicate
that at least one primer spans a distinguishing exon junction. Blue probes have primers
that target distinguishing features, but do not span exon splice junctions, and may amplify
primary transcript or genomic DNA.
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F1cure 85. Cuffdiff 2 isoform-level log2 fold changes in expression compared to qPCR-based
measurements. The plot is faceted by gene, and colored according to expression decile (with
dark blue at the lowest expression decile, and dark red at the highest). Triangular points
indicate that Cuffdiff 2 determined the isoform was significantly differentially expressed
(p < 0.01). Circles indicate that Cuffdiff 2 did not report the isoform as significantly
DE. Outliers are labeled, and we note that they correspond to probes that target primary
transcript or isoforms at lower levels of expression (FPKM < 2.0)
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F1GURE 86. The individual HOXA1 siRNAs HOXA1.5 and HOXA1.8 recapitulate phe-
notype, knockdown efficiency, and gene expression signature of the combined siRNA
pool HOXA1.P (a) Human lung fibroblasts transfected with individual HOXA1 siRNAs
(HOXA1.5-8), a combined pool (HOXA1.P), and a scramble control. (b) HOXA1 knock-
down efficacy of individual HOXA1 siRNAs and a combined pool assayed for with HOXA1
tagman QPCR. Percent remaining was calculated by normalizing relative initial concentra-
tions to TBP and comparing to the TBP normalized scramble control. (c) Row-centered
heatmap of log2 microarray intensity values for differentially expressed genes (10% FDR)
post transfection with the HOXA1.P siRNA pool.
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a siRNA Target sequence

HOXA1.5 GACCATAGGATTACAACTT
HOXA1.6 TCACAGAACTTCAGTGCGC
HOXA1.7 GACGACCGCTTCCTAGTGG

HOXA1.8 CAAGTTGTGGTCCAAGCTA
\—v—l

8mer seed match
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FIGURE 87. (a) Target sequences for individual HOXA1 siRNAs do not contain overlapping
seed matches (red highlight). (b) Row-centered heatmap of log2 microarray intensity values
for the 147 genes that contain seed matches to both the HOXA1.5 and HOXA1.8 siRNAs.
(c) Subset of the 147 (above) genes that decrease significantly in response to transfection
with either the HOXA1.5 and HOXA1.8 siRNAs.
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APPENDIX A. PROBABILITY DISTRIBUTIONS
In this Appendix, for completeness, we review the families of probability distributions we work with.

Notation. The negative binomial distribution NB(r,p) is defined by the distribution

k+r—1 -
(A1) sosnn = (T ot
where k is a non-negative integer, r > 0 and p € (0,1). The mean of the distribution is given by
r(l—p
(A.2) PR €t )
p
and the variance is
1—
(A.3) o2 = 7"(])721’).

We will make use of two different (equivalent) interpretations of the negative binomial distribution. The
first, is that if p is the probability of “success” of of a coin toss, then f(k;n,p) is the probability of observing
exactly k failures in the first k + r — 1 trials and then success in the (k + r)th trial.

The second interpretation is of the negative binomial in terms of mixtures of Poisson random variables
where the Poisson parameter is Gamma distributed; we return to this following the definition of the Gamma
distribution.

Notation. Note that the negative binomial distribution can be defined equivalently by

(A4 fosnp = (T T o

where the interpretation of f is that it is the probability of observing exactly k successes in the first k+7r—1
trials and then failure in the k + rth trial. In what follows, we will require the definition in Equation A.1.

Notation. The Gamma distribution I'(r, §) is defined by the distribution

A5 ) = 1 7
( ) f(x7 T‘, ) xz HT.F(T) b
where z > 0, the parameters r,0 > 0 and I'(r) denotes the Gamma function given by
(A.6) I'(z) = / t*~letdt.
0
The mean of the distribution is given by
(A7) wo o= rl
and the variance is
(A.8) o = ro*

Proposition 2. The negative binomial distribution has an interpretation as a mixture of Poisson dis-
tributions. If X is a random wvariable such that, for a A\, X|X ~ Poisson(\) where A\ ~ T'(r,0) then
X ~ NB(r, ﬁ) That is, if X is a mizture of Poisson distributions where the parameter A in each Poisson
is Gamma distributed, then the distribution of X is negative binomial.

Notation. The beta distribution Be(a, 3) is defined by the distribution

1
A9 : =
( ) f(.T,Oé,ﬁ) B(a,ﬂ)xo‘*l(l _m)ﬁfl
where B(a, ) is the beta function, o, 5 > 0 and x € (0,1). The mean of the distribution is given by
!
A.10 =
(A.10) p Pz
and the variance is
2 af

(A-11) 7T (a+pRa+B+)
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Notation. The beta negative binomial distribution BN B(r, «, 3) is defined by the distribution
r(8) q(r) g (k)
El(a+ B) ") (r+a+ B)H

where (") = z(x 4 1)(x +2)--- (x + 7 — 1), the parameters a, § > 0 and 7, k are non-negative integers. The
mean of the distribution is given by

(A.12) flksr,p) =

(A.13) o= 7"51 if @ > 1, oo otherwise
a

and the variance is
-1 -1

(A.14) o? = rlatr=De+B-1) if @ > 2, co otherwise.

(o —2)(a—1)2
Proposition 3. The beta negative binomial distribution has an interpretation as a mixture of negative
binomial distributions. If X is a random wvariable such that, for a parameter p, X|p ~ NB(r,p) where
p ~ Be(a,B) then X ~ BNB(r,«,3). That is, if X is a mizture of negative binomial distributions where
the parameter p in each negative binomial is beta distributed, then the distribution of X is beta negative
binomial.
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