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Protocol S1 Appendices 

A) Partition around medoids (PAM) cluster analysis for assigning an endemicity class to 
each province and correspondence analysis (CA) between malaria endemicity and 
latifundia in Spain during the 1930s. 

The original maps of Beauchamp (1985) had data about % of land in latifundia and malaria 
transmission intensity (or endemicity) presented in different ways. The % of land in latifundia 
was presented for each province, making unnecessary any elaborated process for data extraction 
at the province level. However, the endemicity was presented as continuous across provinces 
borders, thus requiring the use of tools for image analysis to estimate the endemicity level for 
each province. To assign a malaria endemicity class to each province of Spain we estimated the 
percent of land covered by each of the four categories of endemicity 
(Endemic>Intense>Minimal>Absent) in each province using ArcGis. The extracted data was 
then analyzed using a PAM cluster analysis. In this analysis a number, k, of preset clusters is 
assigned a priori and then clusters are constructed around k representive points of the 
observations in the dataset (Struyf et al, 1997). The number of clusters selected by cross-
validation for PAM was four, which were able to separate 4 levels of endemicity that roughly 
corresponded to the four categories presented in Figure 1B  (See also Appendix B).  We then 
performed a CA to study the association between the level of malaria endemicity and land in 
latifundia of each province. Briefly, a CA is a multivariate analysis that can measure the 
association between categories of different variables (Brand, Numerical Ecology), then when 
variables are projected in a plane spatial proximity is a measurement of association, i.e., the 
closer two categories are in the projection plane, the more associated they are. 

B) Principal component analysis (PCA) and multidimensional scaling (MDS) to estimate an 
index of malaria transmission based on the malaria endemicity categories presented by 
Beauchamp (1985) for Spain in the 1930s. 

To obtain a continuous measurement of endemicity at each province we performed a PCA and a 
MDS on the matrix containing the % of land under each Malaria transmission endemicity level. 
PCA is, among other things, a dimension reduction technique where a data matrix undergoes an 
orthogonal linear transformation resulting in new coordinates for each object in the original 
matrix, where the first axis, a.k.a., component, capture the highest amount of variability in the 
data. To estimate the PCA we employed the variance/covariance matrix of the data. For the PCA 
analysis we first performed an analysis on the four categories of malaria endemicity, which lead 
to null loadings for the “intense” category a signal of an inadequate analysis. Thus, we 
performed a new analysis joining the “ïntense” and “minimum” category. In this second analysis 
the first component explained 68% of the variability in the data and loadings were as follows: % 
absent = -0.815, % endemic = 0.229 and % minimum and Intense = 0.532. These loadings imply 
that more positive values in the first principal component are associated with increased malaria 
transmission and negative values with the absence of the disease. We performed the MDS, 
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another dimension reduction technique, to verify that the PCA was an appropriate tool for 
dimension reduction, since results of PCA and MDS should be very similar if relationships 
between the data are strictly linear (as observed in Figure 1D). For the MDS we employed data 
from the four categories of malaria endemicity and reduced the data to one dimension. Figure S1, 
shows a boxplot of the PCA scores as function of the endemicity levels obtained with PAM (see 
Appendix A). The Figure shows that the PCA based endemicity index is good to separate the 
four transmission categories (Endemic, Intense, Minimal, Absent).  

C) Other rules for the Sale Pressure  

 The Sale Pressure (V) depends on the relative utilities of landowner i with respect to the 
average or median utilities of the population. 

Under this scenario how likely a landowner is to sell all his land in E stage depends on whether 
his/her utilities are above or below the average: 
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Or the median of assets in the population: 
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D) Finding the stationary state of the land trade model of equation (2) 

The probability transition matrix of the Markov chain presented in (2) can be written as follows: 
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By the Erdos-Fellerd-Pollard Theorem, since the Markov chain is irreducible, aperiodic and 
recurrent we can compute the proportional time spend in each state (∏) 
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Which provided: 
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Can be solved as shown in equation (7) 

E) Demonstration that Pi(t=0)>Pj(t=0) implies Pi(t→∞)=1  

When two landowners share the land in a landscape Pi(t)+ Pj(t)=1, therefore Pj(t) =1 - Pi(t). 
Pi(t)>Pi(t-1)  if Pi(t)=Pi(t-1)+ε. The latter is true when ε is positive, which requires:  

zi(t)-zi(t-1)>0            (E.1) 

Substituting the trade rates of equation (6) in equation (2), we have that (E.1) is true when: 
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Which is always true for any value of zj provided that ߤ ൏ 1 in the Markov chain definition. 
(E.2) is true for zi when: 
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Which is always true for the real part, because Pi ≤ 1 by definition. The bounded growth, in a 
probability space, for condition Pi(t)>Pi(t-1) implies that: 

Pi(t→∞)=1           (E.4) 

 
 
 
 
 
 
 


