A mechanochemical model for embryonic pattern formation: Coupling tissue mechanics and morphogen expression

SUPPORTING INFORMATION

Moritz Mercker, Dirk Hartmann, Anna Marciniak-Czochra

TABLE 1: Notations and definitions

For the convenience of the reader, let us shortly repeat the general notations and definitions used in this paper. For more details we refer to [1].

$\partial_i[.]$	partial derivative with respect to u_i .
$\partial_i \vec{X}$	basis vector of the tangential space, i.e.
	$\partial_i \vec{X} = \partial_i [\vec{X}]$
$d_t[.]$	total time derivative,
$(g_{ij})_{i,j}$	first fundamental tensor, $g_{ij} = \partial_i \vec{X}$.
	$\partial_j \vec{X}$, where $ds = \sqrt{g} d^2 u$, and g is its
	determinant.
$(b_{ij})_{i,j}$	second fundamental tensor, $b_{ij} =$
	$-\partial_i \vec{X} \cdot \partial_j \vec{n}.$
g^{ij}	component of the inverse first funda-
	mental tensor,
$\int \dots ds$	surface integral on a manifold, $ds =$
	$\sqrt{g} d^2 u.$
$\nabla^{\Gamma}[.]$	first surface gradient: $\nabla^{\Gamma}[f] =$
	$\sum_{i,j} g^{ij} \partial_j [f] \partial_i \vec{X},$
$\Delta^{\Gamma}[.]$	first surface Laplacian: $\Delta^{\Gamma}[f] =$
	$\frac{1}{\sqrt{g}}\sum_{i,j}\partial_i \left[\sqrt{g}g^{ij}\partial_j[f]\right].$
$\delta^{\alpha}[F]$	Fréchet-derivative or variation with re-
	spect to α ,
$\delta F/\delta \vec{X}(\vec{u})$	strong formulation of $\delta^{\vec{X}}[F]$ in $\vec{X}(\vec{u})$,
H	mean curvature, $H = \operatorname{trace}(\sum_k g^{jk} b_{ij}),$

References

1. Mercker M, Marciniak-Czochra A, Hartmann D (2013) Modeling and computing of deformation dynamics of inhomogeneous biological surfaces. SIAM J Appl Math 73(5): 1768-1792.