Nature Genetics: doi:10.1038/ng.2712

Common variants at SCN5A/SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death

Connie R. Bezzina¹*, Julien Barc^{1,2}*, Yuka Mizusawa¹*, Carol Ann Remme¹*, Jean-Baptiste Gourraud^{3,4,5,6}*, Floriane Simonet^{3,4,5}, Arie O. Verkerk⁷, Peter J. Schwartz⁸⁻¹³, Lia Crotti^{8,9,14}, Federica Dagradi^{8,9}, Pascale Guicheney^{15,16}, Véronique Fressart^{15,16,17}, Antoine Leenhardt^{18,19,20}, Charles Antzelevitch²¹, Susan Bartkowiak²¹, Eric Schulze-Bahr²², Sven Zumhagen²², Elijah R. Behr²³, Rachel Bastiaenen²³, Jacob Tfelt-Hansen^{24,25}, Morten Salling Olesen^{24,25}, Stefan Kääb^{26,27}, Britt M. Beckmann^{26,27}, Peter Weeke²⁸, Hiroshi Watanabe²⁹, Naoto Endo³⁰, Tohru Minamino²⁹, Minoru Horie³¹, Seiko Ohno³¹, Kanae Hasegawa³¹, Naomasa Makita³², Akihiko Nogami³³, Wataru Shimizu^{34,35}, Takeshi Aiba³⁵, Philippe Froguel^{36,37,38}, Beverley Balkau^{39,40}, Olivier Lantieri⁴¹, Margherita Torchio^{8,9} Cornelia Wiese⁴², David Weber⁴², Rianne Wolswinkel¹, Ruben Coronel¹, Bas J. Boukens^{1,7}, Stéphane Bézieau⁴³, Eric Charpentier^{3,4,5}, Stéphanie Chatel^{3,4,5,6}, Aurore Despres^{3,4,5,6}, Françoise Gros^{3,4,5}, Florence Kyndt^{3,4,5,6,43}, Simon Lecointe^{3,4,5,6}, Pierre Lindenbaum^{3,4,5,6}, Vincent Portero^{3,4,5}, Jade Violleau^{3,4,5,6}, Manfred Gessler⁴², Hanno L. Tan¹, Dan Roden²⁸, Vincent M. Christoffels⁷, Hervé Le Marec^{3,4,5,6}, Arthur A. Wilde^{1*}, Vincent Probst^{3,4,5,6*}, Jean-Jacques Schott^{3,4,5,6}*, Christian Dina^{3,4,5,6}* & Richard Redon^{3,4,5,6}*

SUPPLEMENTARY INFORMATION

1. Supplementary Tables 1-6

2. Supplementary Figures 1 - 12

Page 8

Page 2

Page 1 sur 20

Clinical Centre	п	Males	Age at diagnosis	Baseline Type-I ECG	Symptoms ⁽¹⁾	SCN5A carriers
Nantes (FR)	422	323 (77%)	48 (+/-13)	295 (46%)	153 (36%)	71 (17%)
Pavia (IT)	126	105 (83%)	42 (+/-14)	46 (37%)	16 (13%)	20 (16%)
Amsterdam (NL)	101	84 (83%)	48 (+/-13)	46 (46%)	52 (51%)	23 (23%)
Paris (FR)	93	84 (90%)	44 (+/-13)	56 (60%)	28 (30%)	15 (16%)
Utica (US)	74	49 (66%)	42 (+/-17)	24 (32%)	41 (55%)	10 (14%)
Other Centers ⁽²⁾	90	71 (79%)	44 (+/-14)	47 (52%)	42 (47%)	21 (23%)
Japan ⁽³⁾	208	190 (91%)	46 (+/-15)	95 (46%)	84 (40%)	29 (14%)

Supplementary Table 1: Summarized clinical information on 1,114 patients with Brugada syndrome

⁽¹⁾ Ventricular tachycardia, ventricular fibrillation, syncope and near syncope

⁽²⁾ Munster (DE), London (UK), Copenhagen (DK), Munich (DE), Nashville (US)

⁽³⁾ Osaka, Nagasaki, Shiga

Supplementary Table 2: List of SNPs reaching genome-wide significance in the GWAS

SNP	Chromosome	Position	closest gene(s)	Risk allele	Protective allele	P-value	Odds ratio (95% CI)
rs6599240	3	38738717	SCN10A	А	G	1,20E-13	2.0696 [1.7076-2.5084]
rs11129801	3	38750375	SCN10A	G	А	2,77E-08	1.9969 [1.5645-2.5487]
rs9874633	3	38771994	SCN10A	А	G	1,66E-13	2.7009 [2.0742-3.5169]
rs10428132	3	38777554	SCN10A	Т	G	6,79E-26	3.0026 [2.4465-3.6851]
rs7428167	3	38778191	SCN10A	Т	С	1,22E-22	2.8625 [2.3191-3.5331]
rs10428168	3	38780059	SCN10A	Т	С	2,36E-15	2.6190 [2.0636-3.3238]
rs12638572	3	38787797	SCN10A	А	G	2,48E-10	2.1155 [1.6773-2.6680]
rs7641844	3	38802251	SCN10A	А	G	3,80E-08	2.0198 [1.5722-2.5947]
rs7430439	3	38803639	SCN10A	G	А	1,10E-08	1.7533 [1.4460- 2.1258]
rs6599257	3	38804588	SCN10A	С	Т	1,01E-14	2.1738 [1.7858-2.6460]
rs1268070	6	126041164	HEY2	С	Т	5,13E-09	1.8030 [1.4795-2.1973]
rs9388451	6	126090377	HEY2, NCOA7	С	Т	8,85E-10	1.8325 [1.5099-2.2240]

SNP	Cyto Band	Nearest genes	MAF	General trait	allele_A	allele_B	cases_maf	controls_maf	tinfo	beta	se	P-value
rs846111	1p36.31	RNF207,NPHP4,CHDS,ACOT7,PLEKHG5,KLH20	0.26	QTc	G	С	0,253	0,268	0,493	-0,126	0,148	3,94E-01
rs9436640	1p31.3p31.2	NFIA	0.48	QRS	т	G	0.468	0.448	0.950	0.078	0.095	4.09E-01
rs4074536	1n13 3n11	CASO2	0.30	ORS	т	C	0.309	0 290	1 000	0.080	0 101	4 31F-01
re2880058	1023.3	NOSIAP	0.26	OTc	Δ.	G	0 358	0.337	0.803	0 146	0 103	1.56E-01
rc121/29/2	1023.3	NOSTAR	0.20	QTC	C C	т	0,330	0,007	1 000	0,140	0,103	1 41E 01
1512143042	1423.3	NOSTAP	0.16	QIC	0	- -	0,274	0,254	1,000	0,157	0,107	1,412-01
rs10494366	1q23.3	NUSTAP	0.33	QIC	G	_	0,399	0,365	1,000	-0,159	0,095	9,59E-02
rs16857031	1q23.3	NOS1AP	0.15	QTc	С	G	0,146	0,145	1,000	0,054	0,131	6,82E-01
rs12029454	1q23.3	NOS1AP	0.11	QTc	G	A	0,176	0,165	1,000	0,107	0,126	3,96E-01
rs4657178	1q23.3	NOS1AP	0.18	QTc	С	Т	0,272	0,275	1,000	0,026	0,103	8,03E-01
rs10919071	1q24.2	ATP1B1	0.11	QTc	А	G	0,109	0,138	1,000	-0,241	0,140	8,47E-02
rs12731740	1q32.2	CD46,CD34,PLXNA2PLXNA2	0.09	Heart rate	С	т	0,115	0,101	1,000	0,127	0,149	3,94E-01
rs2745967	1n32	CD34	0 49	Heart rate	G	Α	0.372	0.371	1 000	0.035	0.095	7 17E-01
re17301005	1n32.3	C1orf185 RNE11 CDKN2C FAE1	0.03	OPS	NΔ	NΔ	NA	NA	NΔ	NA	NA	ΝΔ
1317 53 1305	2-21		0.05		т. Т	С.	0.206	0.406	0.000	0.020	0.005	
197562790	ZpZ I		0.36	QRS	-	G	0,396	0,406	0,998	-0,028	0,095	7,08E-01
rs17020136	2p22.2	HEATR5B,STRN	0.23	QRS	I	С	0,213	0,182	0,998	0,206	0,119	8,32E-02
rs10865355	2p14	MEIS1	0.46/0.48*	PR	A	G	0,402	0,377	0,999	-0,064	0,099	5,14E-01
rs11897119	2p14	MEIS1	0.46	PR	Т	С	0,401	0,377	0,997	0,057	0,099	5,63E-01
rs2051211	3p22.2	SCN5A,SCN10A	0.19	QRS	A	G	0,217	0,255	0,995	-0,205	0,108	5,88E-02
rs10865879	3p22.2	SCN5A,SCN10A	0.26	QRS	А	С	0,282	0,233	0,949	0,246	0,112	2,81E-02
rs11129795	3p22.2	SCN5A.SCN10A	0.25	QRS	G	А	0.284	0.233	0.960	0.255	0.111	2.18E-02
rs12053903	3n22.2	SCN5A	0.29	OTc	т	C	0 394	0.327	0.950	0.298	0 101	3 15E-03
1012000000	2022.2	SCNEA SCN10A	0.20		т	ĉ	0,004	0,027	0,000	0,200	0,107	1 205 02
153922044	3µ22.2	SCINSA, SCINTOA	0.20/0.00	PR DD/ODO		0	0,233	0,296	0,907	0,344	0,107	1,292-03
rs11/08996	3p22.2	SCN5A,SCN10A	0.17	PR/QRS	G	C	0,228	0,151	1,000	0,540	0,121	8,65E-06
rs6599222	3p22.2	SCN5A,SCN10A	0.23/0.29*	PR	С	Т	0,286	0,218	0,897	-0,411	0,114	3,19E-04
rs11710077	3p22.2	SCN5A,SCN10A	0.18	QRS	A	Т	0,166	0,197	0,682	-0,266	0,146	6,79E-02
rs9851724	3p22.2	SCN5A,SCN10A	0.28	QRS	С	Т	0,226	0,307	0,981	0,387	0,102	1,56E-04
rs6795970	3p22.2	SCN5A,SCN10A	0.42	PR/QRS	Α	G	0,668	0,410	0,968	-0,993	0,091	1,11E-27
rs6798015	3p22.2	SCN5A.SCN10A	0.38/0.06*	PR	с	т	0.607	0.364	0.952	-0.985	0.093	3.53E-26
rs7627552	3n22.2	SCN5A SCN10A	0.18*	PR	NA	NA	NA	NA	NA	NA	NA	NA
re/687718	3p14 3		0.13	OPS	Δ	G	0.120	0 118	0 0/0	0.005	0 1/6	0 7/E_01
154007710	3p14.3		0.13		~	0	0,120	0,110	0,949	0,005	0,140	9,74E-01
rs2242285	3p14.1	LRIG-SLC25A26	0.37	QRS	A _	G	0,436	0,400	0,988	-0,130	0,097	1,81E-01
rs7660702	4q22.1	ARHGAP24	0.25	PR	Т	С	0,277	0,303	1,000	-0,121	0,101	2,27E-01
rs13165478	5q33	HAND1,SAP30L	0.33	QRS	G	A	0,339	0,380	0,993	-0,204	0,097	3,60E-02
rs251253	5q35.1	C5orf41,NKX2.5	0.38	PR	С	Т	0,438	0,377	0,937	-0,276	0,097	4,58E-03
rs1321311	6p21.2	PI16,CDKN1A	0.31	QRS	С	А	0,267	0,248	0,986	0,083	0,106	4,35E-01
rs281868	6a22.31	C6orf204.SLC35F1.PLN.BRD7P3.ASF1A	0.48	Heart rate	G	А	0.478	0.490	0.995	-0.057	0.092	5.34E-01
rs11153730	6g22 31	C6orf204 SI C35E1 PI N BRD7P3 ASE1A	0.48	ORS	т	С	0 470	0.463	0.982	0.020	0.094	8 30E-01
re11070296	6022 1 6022 21	C6orf204 SI C35E1 DI N PDD7D3 ASE1A	0.47	OTo	Ċ	т	0,427	0,122	0.095	0.001	0.004	
1511970200	0422.1-0422.31		0.47	QIC			0,427	0,422	0,905	-0,001	0,094	9,092-01
1912210810	6q22.1-6q22.31	C60ff204,SLC35FT,PLN,BRD7P3,ASFTA	0.08	QIC	NA •	NA	INA 0.00	INA	NA	NA 0.001	NA 0.00	
rs11154022	6q21q23.2	GJA1	0.29	Heart rate	A	G	0,337	0,339	0,998	-0,024	0,097	8,02E-01
rs9398652	6q21q23.2	GJA1	0.07	Heart rate	С	A	0,085	0,099	0,991	-0,146	0,161	3,64E-01
rs1362212	7p14.3	TBX20	0.13	QRS	G	Α	0,226	0,182	0,999	0,319	0,116	6,02E-03
rs7784776	7p12.3	IGFBP3	0.48	QRS	А	G	0,430	0,420	0,984	0,067	0,097	4,87E-01
rs314370	7a22	SLC12A9.UFSP1	0.22	Heart rate	Т	С	0.176	0.189	0.930	-0.128	0.122	2.94E-01
rs3807989	7a31 1	CAV1/CAV2	0.43	PR	А	G	0 471	0 401	1 000	-0 273	0.092	2 94E-03
re2068863	7036.1	KCNH2	0.26	OTc	C C	т	0.245	0.277	0 080	-0 112	0 106	2 02 - 01
1323000003	7930.1	KONH2	0.20	QTC	C C	- -	0,240	0,211	0,303	0,112	0,100	2,020-01
154725902	7430.1	RUNIZ	0.18	QIC		-	0,221	0,204	0,955	0,124	0,117	2,500-01
rs1/33/24	10011.2	DRK2	0.23	QRS	A	G	0,260	0,238	0,996	-0,121	0,106	2,56E-01
rs7342028	10q25.2	VTI1A	0.27	QRS	G	Т	0,260	0,277	0,981	-0,058	0,103	5,75E-01
rs2074238	11p15.5	KCNQ1	0.08	QTc	Т	С	0,093	0,079	0,480	-0,499	0,245	4,17E-02
rs12296050	11p15.5	KCNQ1	0.23	QTc	С	Т	0,180	0,196	0,780	-0,145	0,132	2,73E-01
rs12576239	11p15.5	KCNQ1	0.16	QTc	С	Т	0,124	0,134	0,848	-0,136	0,146	3,52E-01
rs174547	11q12.2q13.1	FADS1	0.38	Heart rate	Т	С	0,329	0,305	0,994	0,069	0,099	4,90E-01
rs4944092	11q13.5	WNT11	0.29	PR	А	G	0,291	0,307	0,609	-0,117	0,128	3,61E-01
rs17287293	12n12 1	SOX5 BCAT1	0.15	Heart rate	А	G	0 171	0 158	0 997	0 144	0 127	2 56E-01
re11047543	12p12.1	SOX5 BCAT1	0.15	DD	G	^	0,176	0,150	1 000	0 177	0 125	1 575 01
002070	12012.1		0.15	000	0	- -	0,170	0,100	1,000	0,177	0,120	2.075.04
18883079	12q24.21	IBA3, IBA5	0.28	QKS	C		0,356	0,280	1,000	-0,356	0,101	3,97E-04
rs3825214	12q24.21	TBX5	0.22	QTc	G	A	0,252	0,190	1,000	-0,367	0,115	1,38E-03
rs7312625	12q24.21	TBX3,TBX5	0.27/0.25*	PR	G	A	0,338	0,264	0,995	-0,352	0,102	5,46E-04
rs1896312	12q24.21	TBX3,TBX5	0.38	PR	С	Т	0,303	0,286	0,990	-0,054	0,102	6,00E-01
rs10850409	12q24.21	TBX3,TBX5	0.32	QRS	G	Α	0,278	0,269	0,969	0,031	0,104	7,69E-01
rs885389	12q24.33	GPR133	0.29	Heart rate	А	G	0,375	0,332	0,971	-0,171	0,099	8,33E-02
rs3825214	12a24 21	TBX3 TBX5	0.22	PR/ORS OTc	G	Α	0 252	0 190	1 000	-0.367	0 115	1 38E-03
rs2//78222	13012 2012 2	SUCI 42	0.35	OTc	c C	Δ	0.364	0 353	1 000	0.026	0.006	7 8/ = 01
1024/0000	10412.2410.0		0.00		- -	~	0,004	0,000	1,000	0,020	0,090	1,04E-01
151866512	13922	NLF12	0.33	QKS		A	0,363	0,378	0,994	-0,072	0,094	4,45E-01
rs365990	14q11.2	MYH6,MYH7,NDNG,ZFHX2	0.31	Heart rate	A	G	0,383	0,378	0,613	0,047	0,123	7,05E-01
rs223116	14q11.2	MYH6,MYH7,NDNG,ZFHX2	0.25	Heart rate	Α	G	0,265	0,253	0,770	-0,101	0,120	4,02E-01
rs11848785	14q24.2	SIPA1L1	0.30	QRS	G	Α	0,296	0,270	0,991	-0,160	0,107	1,34E-01
rs8049607	16p13.13	LITAF,CLEC16A,SNN,ZC3H7A,TNFRSF16	0.49	QTc	т	С	0,484	0,481	0,940	0,018	0,099	8,58E-01
rs37062	16q21	CNOT1,GINS3,SLC38A7,GOT1	0.27	QTc	А	G	0,260	0,239	0,997	0,081	0,107	4,48E-01
rs2074518	17a11.2a12	LIG3.RFFL	0.49	QTc	С	т	0.479	0.456	0.994	0.059	0.093	5.27E-01
rs17609766	17001	COSP2	0.00		т	°.	0 136	0 135	1 000	0 021	0 122	8 1/ = 01
1317000700	17,00-00.0		0.05		·	ç	0,100	0,133	1,000	0,001	0,100	0,170-01
159912468	1/422423.2	PKKUA	0.42	UKS OT	G	с -	0,473	0,404	1,000	-0,099	0,090	2,13E-01
rs1///9747	1/q24.3	KCNJ2	0.32	QIC	G	-	0,353	0,332	U,995	0,109	0,097	2,63E-01
rs991014	18q21.1	SETBP1	0.41	QRS	С	Ť	0,405	0,403	1,000	0,004	0,095	9,66E-01
rs1805128	21q22.12	KCNE1	0.03	QTc	NA	NA	NA	NA	NA	NA	NA	NA

Supplementary Table 4 : Cumulative effect of the three associated SNPs on susceptibility to Brugada syndrome, in Europe and Japan

		Europe	9	Japon			
Nb of at-risk alleles	% controls	% cases	OR	% controls	% cases	OR	
0-1	27.8	9.7	1	40.0	15.4	1	
2	35.8	21.8	1.69 [1.27-2.26]	40.9	37.0	2.35 [1.52-3.63]	
3	25.5	33.6	3.69 [2.78-4.89]	15.2	30.3	5.18 [3.26-8.25]	
4	9.4	26.2	7.89 [5.75-10.81]	3.7	14.4	10.14 [5.56-18.49]	
5-6	1.5	8.7	19.89 [11.68-33.86]	0.1	2.9	75.00 [8.76-642.2]	

Trait	SNP	Population	Affect	ed (PP F	PR RR)	Non a	off. (PP F	R RR)	beta add	p add
		Europe	200	110	15	317	198	33	-0,163	0,172
	rs11708996_C	Japan	66	15	3	105	16	0	0,630	0,066
		All	266	125	18	422	214	33	-0,074	0,509
		Europe	31	138	162	76	240	232	0,277	0,009
Symptoms	rs10428132_T	Japan	32	34	17	37	56	28	-0,205	0,293
		All	63	172	179	113	296	260	0,170	0,065
		Europe	48	157	123	99	240	218	0,027	0,783
	rs9388451_C	Japan	8	38	37	9	44	68	-0,337	0,132
		All	56	195	160	108	284	286	-0,032	0,722
		Europe	250	134	24	274	179	25	-0,102	0,377
	rs11708996_C	Japan	76	15	3	97	16	0	0,414	0,228
		All	326	149	27	371	195	25	-0,045	0,682
Deceline Drf	rs10428132_T	Europe	46	185	179	63	198	220	-0,003	0,974
Baseline Brs		Japan	30	43	22	40	47	24	0,095	0,620
ECG		All	76	228	201	103	245	244	0,020	0,822
		Europe	64	189	157	86	213	189	0,009	0,926
	rs9388451_C	Japan	7	37	50	10	45	57	0,093	0,678
	_	All	71	226	207	96	258	246	0,028	0,755
		Europe	100	50	8	419	262	40	-0,134	0,385
	rs11708996_C	Japan	24	3	1	149	28	2	-0,093	0,855
		All	124	53	9	568	290	42	-0,127	0,391
		Europe	19	79	62	89	299	336	-0,215	0,097
SCN5A mutation –	rs10428132_T	Japan	15	12	2	55	78	44	-0,839	0,010
		All	34	91	64	144	377	380	-0,306	0,009
		Europe	24	76	60	125	325	281	0,061	0,633
	rs9388451_C	Japan	2	9	17	15	73	90	0,305	0,365
		All	26	85	77	140	398	371	0,095	0,423

* PP: homozygous for the protective allele ; PR : heterozygous ; RR: homozygous for the risk alleles

Supplementary Table 6: Independent heterozygote effects for the three associated SNPs

SNP	OR	Z score	p-value
rs11708996	1.01 [0.79-1.29]	0.07	9.46E-01
rs10428132	0.92 [0.79-1.07]	-1.06	2.90E-01
rs9388451	0.86 [0.74-1.01]	-1.84	6.55E-02

Supplementary Figure 1: Multidimensional scaling (MDS) identifies 42 samples of non-European descent On the left-panels, the first 3 principal components are plotted against one another for combined genotype data from cases, D.E.S.I.R. controls, and individuals from the 1000 Genomes Project (EUR, European; AFR, African; ASN, East Asian; AMR, Admixed American). The right-panels are zoomed views from the same plots, where 42 samples of Non-European descent, which were excluded from the GWAS study, are displayed in grey.

<u>Supplementary Figure 2: MDS on samples of European ancestry defines 2 homogeneous case-control sets</u> suitable for GWAS

MDS including genotype data of European descent individuals drawn from 1000 Genomes Project indicates, as displayed in the left-panels, that the corresponding individuals can be used as additional controls in the present study. The GWAS was conducted separately on the two homogeneous case-control groups thus identified (shown respectively on the middle- and right-panels). The association data obtained on both groups were subsequently combined in a meta-analysis, which included a total of 312 cases and 1,115 ancestry-matched controls. CEU, Utah residents (CEPH) with Northern and Western European ancestry; GBR, British from England and Scotland; TSI, Tuscan from Italy; IBS, Iberian populations from Spain.

Supplementary Figure 3: Quantile-quantile plot for the genome-wide association results

(a) Q-Q plot of association results (inverse normal meta-analysis) for 360,149 SNPs in 312 cases and 1,115 ancestry-matched controls. The horizontal axis shows (-log10 transformed) expected p values while the vertical axis indicates (-log10 transformed) observed p values. Straight line indicates expected results under null hypothesis. (b) Zoomed view of the same Q-Q plot, indicating no widespread small differences in allele frequencies between cases and controls.

Supplementary Figure 4: Manhattan plot and association results at each significantly associated locus after genome-wide imputation of non-genotyped alleles

(a) Manhattan plot showing the association of SNPs with Brugada syndrome in a GWAS of 312 cases versus 1,115 controls, after imputation of the 1000 Genome Project variants (CEU population). The red horizontal line marks the threshold for genome-wide significance ($P = 5 \times 10^{-8}$). Two loci reached genome-wide significance, on chromosomes 3 and 6. (b) Association plots at 3q22.2 (left panel) and 6q22.32 (right panel). Each SNP is plotted with respect to its chromosomal location (x-axis) and its P value (y-axis on the left). SNPs are coloured according to their degree of linkage disequilibrium (R^2), with the leading variant highlighted with a purple square and displayed by name. The tall blue spikes indicate the recombination rate (y-axis on the right) at that region of the chromosome. The blue-outlined triangles indicate coding region SNPs. Coordinates are given according to NCBI build 37.

<u>Supplementary Figure 5: Restricting the GWAS to D.E.S.I.R. controls and ancestry-matched cases with</u> Brugada syndrome by stringent MDS criteria confirms both association hits

(a) On the left-panel, the first two principal components are plotted against one another for combined genotype data from the cases, D.E.S.I.R. controls, and European descent individuals from the 1000 Genomes Project (CEU, Utah residents (CEPH) with Northern and Western European ancestry; GBR, British from England and Scotland; TSI, Tuscan from Italy; IBS, Iberian populations from Spain). The right-panel displays the first two principal components for genotype data pertaining to the 856 D.E.S.I.R. controls and 254 cases used in the subsequent GWAS: the samples in grey were excluded from subsequent GWAS by applying stringent exclusion criteria. (b) The left-panel displays the Q-Q plot of association results for 364,984 SNPs in the 254 cases and the 856 ancestry-matched controls. The right-panel is a zoomed view of the same plot, indicating no widespread small differences in allele frequencies between cases and controls. (c) Manhattan plot showing SNP association with Brugada syndrome. The red horizontal line marks the threshold for genome-wide significance ($P=5 \times 10^{-8}$).

Supplementary Figure 6: Q-Q plot for ECG-associated SNPs

The analysis of 54 independent SNPs previously associated with ECG traits (after exclusion of the haplotype including rs10428132) results in a significant enrichment in association signals ($P=5.0 \times 10^{-8}$). Note that, when all SNPs from the SCN5A/SCN10A locus were removed, a large decrease in statistical significance (P=0.0011) was observed. The horizontal axis shows (-log10 transformed) expected P values, the vertical axis (-log10 transformed) observed p values. The straight line indicates expected results under the null hypothesis.

Supplementary Figure 7: Q-Q plot for SNPs located at loci harboring susceptibility genes for Brugada syndrome

The horizontal axis shows (-log10 transformed) expected p values while the vertical axis indicates (-log10 transformed) observed p values. Straight line indicates expected results under the null hypothesis.

QQ-plot

<u>Supplementary Figure 8: Nav1.5 patterning across the ventricular wall in *Hey2* knockout embryos and adult $Hey2^{+/-}$ hearts</u>

(a) Immunohistochemical staining displaying expanded expression of Na_v1.5 in the compact zone of the ventricular myocardium (white arrowheads) in embryonic hearts (ED16.5) of *Hey2* knockout mice. Tnni3 (troponin I) is used as cardiomyocyte marker. Note the thinner (hypoplastic) left and right ventricular compact walls and the smaller and deformed right ventricle in knockout mice. La, left atrium; ra, right atrium; ivs, interventricular septum; lv, left ventricle; rv, right ventricle; lbb, left bundle branch; avb, atrioventricular bundle; pv, pulmonary vein; lsh, left sinus horn. (b) Immunohistochemical staining of Na_v1.5 in left ventricle (LV), right ventricle (RV) and right ventricular outflow tract (RVOT) regions of adult wild-type (WT) and *Hey2*^{+/-} hearts. No differences in Na_v1.5 distribution across the myocardial wall were detected between adult WT and *Hey2*^{+/-} hearts (sub-epicardial layers are indicated by white arrowheads; scale bar: 25 µm).

Supplementary Figure 9: Heart weight in adult WT and *Hey2*^{+/-} mice.

Heart weight to body weight ratios (left) and heart weight to tibia length ratios (right) were similar in adult wild-type (WT, n=8) and $Hey2^{+/-}$ (n=8) mice.

<u>Supplementary Figure 10: ECG data in adult WT and $Hey2^{+/2}$ mice.</u> Surface ECG parameters measured from anaesthetized (isoflurane) adult wild-type (WT) and $Hey2^{+/2}$ mice. No significant differences in heart rate or PR-, QRS-, and QTc-intervals were observed between WT and $Hey2^{+/2}$ mice.

Supplementary Figure 11: RV and LV conduction velocities in WT and *Hey2*^{+/-} hearts.

(a) Representative optical activation maps measured in right (RV) and left ventricle (LV) of isolated adult hearts. Hearts were stimulated at a basic cycle length of 120 ms, and longitudinal (CV-L) and transversal conduction velocities (CV-T) were measured as indicated. (b) Average longitudinal (CV-L) and transversal conduction velocities (CV-T) in LV and (c) RV were similar in WT and $Hey2^{+/-}$ hearts.

Supplementary Figure 12: Genotyping plots for the three SNPs associated with Brugada syndrome

(a) Cluster plots of the SNPs rs9388451, rs10428132 and rs11708996 genotyped on Affymetrix Axiom CEU-1 arrays for cases (top-panel) and controls (bottom-panel). Blue squares, red circles and green triangles indicated AA, AB and BB genotypes, respectively; "x" symbols indicate missing genotype calls. (b) Scatter plot analysis of TaqMan® Endpoint genotyping assay using a LightCycler® 480 Real-Time PCR System (Roche, Mannheim, Germany). (c) Scatter plot analysis of TaqMan® Endpoint genotyping assay using the ABI Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA, USA). The X-axis reports the FAM-fluorescence intensity; the Y-axis the VIC-fluorescence intensity. Green/blue triangles indicate homozygote genotypes; red triangles heterozygote samples; grey circles or "x" symbols missing genotype calls. Arrows indicate the samples for which genotypes were validated by capillary sequencing.

Supplementary Figure 13: Quality control of imputed risk allele dosages

(a) Distribution of imputed risk allele dosages for the control population (n=806) used in the European replication set. (b) Comparison of the genetic scores obtained with imputed *versus* typed SNPs for 49 individuals.

