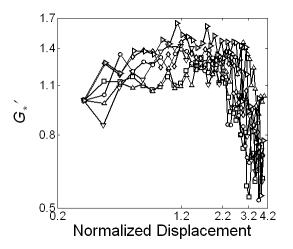
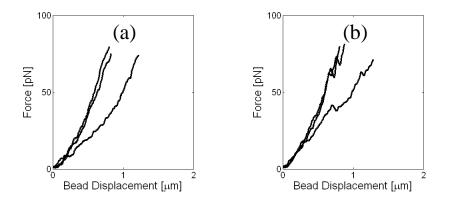
Supplementary Material for


Molecular Origin Of Strain-Softening In Cross-Linked

F-Actin Networks


Hyungsuk Lee, Jorge M. Ferrer, Matthew J. Lang, Roger D. Kamm

Microsphere preparation.

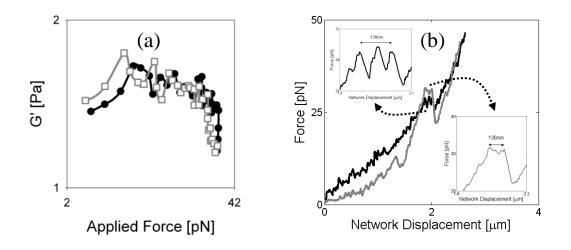

1mg/ml PLL-PEG solution is prepared by dissolving Poly-L-Lysine-graft-PolyEthylene Glycol (PLL-PEG; SurfaceSolutions Inc. Zurich, Switzerland) in G-buffer (5 mM Tris-HCl, 0.2 mM CaCl₂, 0.5mM DTT, 0.2 mM ATP, pH 8.0). 1 μ m dia. carboxylated microspheres stock (2.5% solids, Polybead Carboxylate Microspheres; Polysciences, Warrington, PA) is diluted to be 5mg/ml with G-buffer. 100 μ L of PLL-PEG solution is mixed with the same amount of bead solution for 30min using a rotator. The microsphere solution is centrifuged at 2000g for 15min and resuspended with 100 μ L G-buffer. After washing for three times, the microsphere pellets are resuspended with 50 μ L G-buffer. The PEG-coated microspheres are kept at 4°C and used within 10 days.

Fig. S1 Normalized elastic modulus G_*' as a function of the normalized bead displacement for the F-actin networks cross-linked with α -actinin.

Fig. S2 Representative force-displacement curves without (a) and with (b) a force peak for streptavidin/biotin-F-actin networks. (a) Approximately 69% of the measurements did not show a transition in their force responses. (b) Even in the responses with a force drop, the transitions occur at 58.7 ± 9.7 pN, which is higher that the critical force for filamin networks.

Fig. S3 (a) Reversible behavior is observed in some measurements of mechanical properties of the filamin/F-actin networks ($c_A = 30 \mu M$, $R_f = 0.01$) for increasing (\bullet) and decreasing (\Box) force. (b) Consecutive undulations (top inset) or a plateau (bottom inset) observed in the network response might be attributed to unfolding of filamin rather than unbinding.