## SUPPLEMENTARY ONLINE DATA New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases

### Boris SAN LUIS\*, Nicolas NASSAR† and Nick CARPINO\*1

\*Department of Molecular Genetics and Microbiology, Room 130, Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5222, U.S.A., and †Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, MLC 7013, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A.



#### Figure S1 Similar orientation of Sts-1 Arg<sup>383</sup> equivalents in other HP enzymes

Comparison of active-site residues in murine Sts-1<sub>PGM</sub> (**A**) and *A. fumigatus* phytase (**B**, left-hand panel) and *E. coli* glucose-1-phosphatase (G1P; **B**, right-hand panel), highlighting the orientation of Arg<sup>383</sup> in Sts-1<sub>PGM</sub> and its equivalents in other HP enzymes. Stick representations were created in PyMOL using the following crystal structures: PDB code 2H0Q (Sts-1<sub>PGM</sub>), PDB code 1NT4 (*E. coli* glucose-1-phosphatase) and PDB code 1DKL (*E. coli* phytase).



# Figure S2 $\,$ Requirement for Arg $^{383}$ in the Sts-1 $_{\text{PGM}}$ catalytic reaction towards pNPP $\,$

Comparison of the initial velocities of phosphatase reactions containing either wild-type  $Sts-1_{PGM}$  (WT; 10 nM, green) or  $Sts-1_{PGM}$  R383A (10, 100 or 1000 nM, blue) against various concentrations of pNPP (1.25–20 mM). Michaelis–Menten parameters (lower panel) were calculated from the saturation curves using GraphPad Prism.



## Figure S3 Equivalent levels of expression for wild-type Sts-1 (WT) and Sts-1 R383A in reconstituted primary T-cells

GFP<sup>+</sup> Sts- $1/2^{-/-}$  reconstituted cells were sorted by flow cytometry, lysed in Laemmli sample buffer and the levels of Sts-1 proteins (arrow) were assessed by Western blot analysis using an anti-FLAG antibody.



Figure S4 Alignment of individual members of Branch 1 and 2 HPs, highlighting the presence of an arginine residue in the active sites of both Branch 2 AcPs and a small number of Branch 1 enzymes

The evolutionary history was inferred by using the Maximum Likelihood method based on the JTT matrix-based model [1,2]. The evolutionary analysis was conducted in MEGA5 [3] and involved 68 amino acid sequences.

### REFERENCES

- Jones, D. T., Taylor, W. R. and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS, Comput. Appl. Biosci. 8, 275–282
- 2 Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution **39**, 783–791
- 3 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739

Received 21 November 2012/5 April 2013; accepted 9 April 2013 Published as BJ Immediate Publication 9 April 2013, doi:10.1042/BJ20121769