## SUPPORTING INFORMATION

## Ascites analysis by a microfluidic chip allows tumor cell profiling

Vanessa Peterson<sup>1,4\*</sup>, Cesar M. Castro<sup>1,3\*</sup>, Jaehoon Chung<sup>1</sup>, Nathan Miller<sup>1,4</sup>, Adeeti Ullal<sup>1,4</sup>, Maria Castano<sup>1</sup>, Richard T. Penson<sup>3</sup>, Hakho Lee<sup>1</sup>, Michael Birrer<sup>3</sup>, Ralph Weissleder<sup>1,2,3#</sup>

<sup>1</sup> Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114,

<sup>2</sup> Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115

<sup>3</sup> Massachusetts General Hospital Cancer Center, Harvard Medical School Boston, MA 02114

<sup>4</sup> Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

**Fig. S1. Profiling of cancer cell lines.** Twelve different ovarian cancer (OvCA) cell lines, and six benign cell lines (two mesothelial cell lines (LP9, LP3); two benign ovarian cell lines (TIOSE4,TIOSE6); primary human lymphocytes/neutrophils) were tested for their expression levels ( $\lambda$ =signal/background-1) of putative diagnostic protein markers using flow cytometry. For each marker the frequency of cell lines with  $\lambda$  >1.5 (red) are shown on right hand side of the heat map (grey bar) and are rank-ordered by abundance of positive cell lines. The data is categorized into 4 subgroups: i) markers present in malignant cells (Unique Malignant; top left), ii) markers in malignant and benign cells (Ubiquitous, right), iii) markers in benign cells only (Benign; middle left), and iv) markers absent in both cell types (Absent; bottom left). This dataset was used to identify markers for subsequent analysis of primary human samples (**Fig. 2**). Parenthesis represents different antibodies used for the same marker (**Table S2**).





**Fig. S2.** Shows representative histograms of a reduced set of markers and cell lines from the large scale cell profiling data shown in **Fig. S1**. The reduced set includes 7 different markers(EpCAM, CD24, TAG-72, CA19-9, Vimentin, Calretinin, and CD45) measured across 12 cell lines (8 OvCA, 4 Ctrl) using flow cytometry. The fluorescent signal of each marker is shown in blue and the control is shown in red. The control in this example refers to the secondary antibody without the primary antibody. EpCAM CD24 TAG-72 CA19-9 Vimentin Calretinin CD45



**Fig. S3.** Flow cytometry data of 8 representative clinical samples from the training set (**Fig. 2**). Histograms for 6 different markers (EpCAM, CD24, TAG-72, CA19-9, Vimentin, or Calretinin) are shown for four OvCA populations (Calretinin-/CD45-) and four mesothelial cell populations (Calretinin+). The primary antibody cocktail consisted of CD45 rat antibody, calretinin rabbit antibody, and mouse antibody for the marker of interest (e.g. either EpCAM, CD24, TAG-72, CA19-9, Calretinin, or Vimentin). The secondary antibody cocktail consisted of three fluorophores: Anti-mouse FITC, Anti-Rabbit AF647, and Anti-Rat PeCY7. Calretinin-AF647/CD45-PECy7 negative cells or Calretinin-AF647 positive cells were then gated on (see **Fig. 2** for details). The signal over noise ratio (SNR) was determined by dividing the geometric mean of the signal (blue) over that of the ctrl (red) ( $\lambda$ =sig/ctrl-1). Flow cytometry data was analyzed using FlowJo 7.6.3.



**Fig. S4. ROC analyses of training set.** ROC curves were plotted for individual markers using the 18 patient samples in the training set (top). The area under the curve (AUC) and the optimal cutoff level were calculated and are summarized in the bottom table. The cutoff values were then used to determine the sensitivity, specificity, accuracy of each individual marker and the V3 and  $ATC_{dx}$  panel (**Table 3, Table S1**).



| Markers  | AUC  | Optimal Cutoff<br>level | SE    | 95% CL         |  |
|----------|------|-------------------------|-------|----------------|--|
| EpCAM    | 0.92 | 0.40                    | 0.074 | 0.778 to 1.068 |  |
| CA19-9   | 0.59 | 1.57                    | 0.121 | 0.355 to 0.828 |  |
| CD24     | 0.92 | 0.81                    | 0.074 | 0.778 to 1.068 |  |
| TAG-72   | 0.82 | 0.49                    | 0.096 | 0.635 to 1.010 |  |
| FOLR1    | 0.75 | 1.65                    | 0.099 | 0.551 to 0.940 |  |
| CA-125   | 0.61 | 10.47                   | 0.123 | 0.369 to 0.850 |  |
| Vimentin | 0.86 | 2.20                    | 0.078 | 0.705 to 1.011 |  |

**Fig. S5. Ascites cellular composition and volume**. Ascites samples from 65 patients with (blue; n=46) or without (green; n=19) ovarian cancer were analyzed for total cell number (top left), malignant cell number (bottom left; ATCs), cell volume (top right) and fraction of malignant cells compared to total cells (bottom right). Viable cells were counted using trypan blue staining and the Countess cell counter (Invitrogen). Malignant cell number were determined using ATC<sub>dx</sub> via flow cytometry (see Methods for more details). Data are plotted as waterfall plots.









**Fig. S6. ATC chip design and measurements.** A representative example of an ascites sample before purification (A) and after on-chip purification (B). Captured cells (green represents DAPI staining) in the 20  $\mu$ m capture sites of the ATC chip.





assa - assa - assa - assa - ------

**Fig. S7. ATC chip design and measurements.** (A) The layout of the ATC chip consists of four different sized capture sites (15, 20, 30 and 40  $\mu$ m; n = 4,925). Capture site dimensions are  $\mu$ m scale. (B) The capture site in the device has a bowl-like structure with an underpass gap that allows smaller cells to pass through. The length of Path A is considerably shorter than Path B resulting in less flow resistance. Due to the flow resistance difference, most of the fluid flows through path A rather than Path B. Cells that attempt to pass through Path A that are larger than the capture site will be trapped while smaller cells will pass through.

|   | ۱. |
|---|----|
| F | ٩. |

| Capture Sites<br>Size (µm) | # of capture sites | L   | L1  | L2 | La | W1 | W2 | W3  | W4 | H1 | H2 |
|----------------------------|--------------------|-----|-----|----|----|----|----|-----|----|----|----|
| 40 µm                      | 495                | 580 | 100 | 5  | 60 | 60 | 60 | 120 | 40 | 60 | 30 |
| 30 µm                      | 1190               | 480 | 100 | 10 | 40 | 45 | 50 | 100 | 25 | 60 | 30 |
| 20 µm                      | 1490               | 430 | 100 | 10 | 30 | 35 | 40 | 40  | 20 | 30 | 15 |
| 15 µm                      | 1750               | 340 | 100 | 5  | 20 | 25 | 25 | 50  | 7  | 30 | 15 |





**Fig. S8. Schematic of on-chip labeling and purification.** First, ascites fluid is collected from the patient which contains malignant cells (red) amongst an anti-inflammatory milieu of host cells (green). Ascites cells are added to the chip followed by an antibody cocktail (EpCAM-FITC, Vimentin-PE/Cy7 Calretinin-Biotin/AF647, CD45-Biotin/AF647, Marker-AF555). Streptavidin-coated magnetic particles then bind to the benign mesothelial cells (Calretinin+) and leukocytes (CD45+). A magnet under the inlet captures the benign cells (red) while the malignant cells (green) pass freely through the microchip. The four different size microwells (40, 30, 20,15  $\mu$ m) allow for capture of the malignant cells while allowing for the typically smaller leukocytes to pass through the device. The ATC<sub>dx</sub> signature (EpCAM+ and/or Vimentin+/Calretinin-/CD45-) can then be imaged to determine number of ATCs.



**Fig. S9. Predictive ATC markers of treatment response.** Key treatment response markers are plotted for 6 patients who were analyzed serially and either responded to treatment (left) or progressed (right). Responders typically have proliferation (Ki67, p-Histone 3, p-CyclinD), mRNA translation (p-4E-BP1) and protein translation (p-S6RP) markers downregulated compared to the non-responders. Each marker was measured in duplicate for each time point and the error bars represent the SEM.



| Test set (n = 47) |       |        |       |        |       |                          |  |
|-------------------|-------|--------|-------|--------|-------|--------------------------|--|
| Marker            | EpCAM | CA19-9 | CD24  | TAG-72 | V3    | <b>ATC</b> <sub>dx</sub> |  |
| Sensitivity       | 93.9  | 35.7   | 85.7  | 78.6   | 15.2  | 100.0                    |  |
| Specificity       | 100.0 | 100.0  | 100.0 | 100.0  | 100.0 | 100.0                    |  |
| Accuracy          | 95.7  | 53.8   | 89.7  | 84.6   | 40.4  | 100.0                    |  |

Table S1. Sensitivity, specificity, and accuracy of different protein markers in the test set.

| Number | Biomarker                       | Clone        | Company                                | Species     | Dilution |
|--------|---------------------------------|--------------|----------------------------------------|-------------|----------|
| 1      | 53BP1                           | Polyclonal   | Cell Signaling                         | Rabbit      | 1 to 100 |
| 2      | B7-H3                           | 185504       | R&D                                    | Mouse IgG1  | 1 to 100 |
| 3      | B7-H4                           | MIH43        | Pierce                                 | Mouse IgG1  | 1 to 100 |
| 4      | CA-125                          | X75          | Abcam                                  | Mouse IgG1  | 1 to 100 |
| 5      | CA-19-9                         | SPM110       | Abcam                                  | Mouse IgG1  | 1 to 20  |
| 6      | Caldesmon                       | h-CD         | Dako                                   | Mouse IgG1  | 1 to 30  |
| 7      | Calretinin                      | DC8          | Invitrogen                             | Rabbit      | 1 to 100 |
| 8      | Calretinin                      | DAK-Calret 1 | Dako                                   | Mouse IgG1  | 1 to 50  |
| 9      | CD15                            | 28           | AbCam                                  | Mouse IgM   | 1 to 100 |
| 10     | CD24                            | SN3 A5-2H10  | eBioscience                            | Mouse IgG1  | 1 to 50  |
| 11     | CD44                            | IM7          | Biolegend                              | Rat IgG2b   | 1 to 50  |
| 12     | CD44v6                          | 2F10         | R&D                                    | Mouse IgG1  | 1 to 100 |
| 13     | CD44v9                          | RV3          | Dr. Hideyuki Saya<br>(Keio University) | Rat lgG2a   | 1 to 250 |
| 14     | CD45                            | YTH24.5      | Abcam                                  | Rat IgG2b   | 1 to 100 |
| 15     | CD45                            | H130         | Biolegend                              | Mouse IgG1  | 1 to 50  |
| 16     | CD45-Alexa Fluor<br>647         | H130         | Biolegend                              | Mouse IgG1  | 1 to 100 |
| 17     | CD45                            | Polyclonal   | Abcam                                  | Rabbit      | 1 to 100 |
| 18     | CEA (a)                         | M111146      | Fitzgerald                             | Mouse IgG1  | 1 to 100 |
| 19     | CEA (b)                         | M85151A      | Fitzgerald                             | Mouse IgG1  | 1 to 100 |
| 20     | CEA (c)                         | M111147      | Fitzgerald                             | Mouse IgG1  | 1 to100  |
| 21     | CEA (d)                         | 487618       | R&D                                    | Mouse IgG1  | 1 to 100 |
| 22     | CK18                            | DA-7         | EXBIO                                  | Mouse IgG1  | 1 to 100 |
| 23     | CK19                            | A53-B/A2.26  | Neomarkers (Pierce)                    | Mouse IgG2a | 1 to 20  |
| 24     | CK20                            | Q2           | Thermo Scientific                      | Mouse IgG1  | 1 to 20  |
| 25     | CK7                             | OV-TL 12/30  | Neomarker                              | Mouse IgG1  | 1 to 20  |
| 26     | CK8                             | C-43         | Affinity Bioreagents                   | Mouse IgG1  | 1 to 100 |
| 27     | Claudin 3                       | 385021       | R&D                                    | Mouse IgG2a | 1 to 100 |
| 28     | Claudin 7                       | 4D4          | Abnova                                 | Mouse IgG2a | 1 to 50  |
| 29     | Cleaved Caspase 3               | 5A1E         | Cell Signaling                         | Rabbit      | 1 to 100 |
| 30     | Cleaved Caspase 8               | 18C8         | Cell Signaling                         | Rabbit      | 1 to 100 |
| 31     | Cyclin D1                       | CD1.1        | GeneTex                                | Mouse IgG1  | 1 to 100 |
| 32     | D2-40                           | D2-40        | Abcam                                  | Mouse IgG1  | 1 to 50  |
| 33     | E-Cadherin                      | HECD-1       | Life Technologies                      | Mouse IgG1  | 1 to 30  |
| 34     | EGFR                            | F4           | Abcam                                  | Mouse IgG1  | 1 to 100 |
| 35     | EMA                             | E29          | Dako                                   | Mouse IgG2a | 1 to 30  |
| 36     | EMMPRIN                         | 109403       | R&D                                    | Mouse IgG2b | 1 to 100 |
| 37     | EpCAM (a)                       | MOC-31       | Dako                                   | Mouse IgG1  | 1 to 30  |
| 38     | EpCAM (b)                       | BerEP4       | Dako                                   | Mouse IgG1  | 1 to 100 |
| 39     | EpCAM-FITC                      | BerEP4       | Dako                                   | Mouse IgG1  | 1 to 100 |
| 40     | EpHA2                           | 371805       | R&D                                    | Mouse IgG2a | 1 to 100 |
| 41     | ER (Estrogen<br>Receptor alpha) | 6F11         | Abcam                                  | Mouse IgG1  | 1 to 100 |
| 42     | ESE-1                           | Polyclonal   | Abcam                                  | Rabbit      | 1 to 100 |
| 43     | FGFR-4                          | 4FR6D3       | Biolegend                              | Mouse IgG1  | 1 to 50  |
| 44     | FOLR1                           | 548908       | R&D                                    | Mouse IgG1  | 1 to 100 |
| 45     | FSHR (a)                        | Polyclonal   | GeneTex                                | Rabbit      | 1 to 100 |
| 46     | FSHR (b)                        | H-190        | Santa Cruz                             | Rabbit      | 1 to 20  |
| 47     | FSHR (c)                        | Polyclonal   | Novus Biologicals                      | Rabbit      | 1 to 100 |
| 48     | FSHR (d)                        | Polyclonal   | Genetex                                | Rabbit      | 1 to 100 |

Table S2. List of antibodies used in the study.

| 49  | HE4                           | 3F9        | Abnova             | Mouse IgG2b | 1 to 50  |
|-----|-------------------------------|------------|--------------------|-------------|----------|
| 50  | Her2                          | 191924     | R&D                | Mouse IgG2b | 1 to 100 |
| 51  | Her3                          | RTJ2       | Abcam              | Mouse IgG1  | 1 to 100 |
| 52  | Ki67                          | B56        | BD Pharmingen      | Mouse IgG1  | 1 to 50  |
| 53  | Ki67-Alexa Fluor 555          | B56        | BD Pharmingen      | Mouse IgG1  | 1 to 30  |
| 54  | Ku80                          | C48E7      | Cell Signaling     | Rabbit      | 1 to 100 |
| 55  | MAGP2                         | Polyclonal | Abnova             | Rabbit      | 1 to 100 |
| 56  | Mesothelin                    | K1         | Abcam              | Mouse IgG1  | 1 to 100 |
| 57  | Mesothelioma                  | ME1        | Thermo Scientific  | Mouse IgG1  | 1 to 50  |
| 58  | MUC1                          | M01102909  | Fitzgerald         | Mouse IgG1  | 1 to 100 |
| 59  | MUC18                         | 128018     | R&D                | Mouse IgG1  | 1 to 100 |
| 60  | MUC2                          | M53        | Neomarker (Pierce) | Mouse IgG2a | 1 to 20  |
| 61  | p-4E-BP1                      | 17489      | Cell Signaling     | Rabbit      | 1 to 100 |
| 62  | P-Cadherin                    | 104805     | R&D                | Mouse IgG1  | 1 to 100 |
| 63  | p-Cyclin D                    | D29B3      | Cell Signaling     | Rabbit      | 1 to 100 |
| 64  | p-Histone 3                   | D2C8       | Cell Signaling     | Rabbit      | 1 to 100 |
| 65  | p-p44/42 MAPK<br>(p-ERK 1/2)  | D13.14.4E  | Cell Signaling     | Rabbit      | 1 to 100 |
| 66  | p53                           | 1C12       | Cell Signaling     | Mouse IgG1  | 1 to 100 |
| 67  | Pan Cytokeratin               | C-11       | Axxora             | Mouse IgG1  | 1 to 100 |
| 68  | PARP                          | 46D11      | Cell Signaling     | Rabbit      | 1 to 100 |
| 69  | PAX8                          | Polyclonal | Proteintech        | Rabbit Poly | 1 to 50  |
| 70  | р-р53                         | FP3.2      | Pierce             | Mouse IgG1  | 1 to 100 |
| 71  | Podoplanin                    | NZ-1.3     | eBioscience        | Rat IgG2a   | 1 to 100 |
| 72  | PR (progesterone<br>receptor) | 1A6        | Millipore          | Mouse IgG1  | 1 to 30  |
| 73  | p-S6RP (a)                    | D57.2.2E   | Cell Signaling     | Rabbit      | 1 to 50  |
| 74  | p-S6RP (b)                    | 2F9        | Cell Signaling     | Rabbit      | 1 to 50  |
| 75  | S100                          | 6G1        | Fitzgerald         | Mouse IgG1  | 1 to 200 |
| 76  | S100-A1                       | 1D5        | Abgent             | Mouse IgG1  | 1 to 100 |
| 77  | S100-A11                      | 2F4        | Abgent             | Mouse IgG2a | 1 to 50  |
| 78  | S100-A2                       | M2         | Abgent             | Mouse IgG2a | 1 to 50  |
| 79  | S100-A4                       | 1F12-1G7   | Abgent             | Mouse IgG1  | 1 to 100 |
| 80  | S100-A6                       | 6B5        | Abgent             | Mouse IgG1  | 1 to 100 |
| 81  | S100-A7                       | 1A4        | Abgent             | Mouse IgG1  | 1 to 100 |
| 82  | S100-A8                       | 2H2        | Abgent             | Mouse IgG2a | 1 to 100 |
| 83  | S100-A9                       | 1C10       | Abgent             | Mouse IgG   | 1 to 100 |
| 84  | S100B                         | 472806     | R&D                | Mouse IgG2a | 1 to 100 |
| 85  | S100P                         | 4E7        | Abnova             | Mouse IgG2b | 1 to 100 |
| 86  | S6RP (a)                      | 5G10       | Cell Signaling     | Rabbit      | 1 to 50  |
| 87  | S6RP (b)                      | 54D2       | Cell Signaling     | Mouse IgG1  | 1 to 50  |
| 88  | TAG-72                        | CC49       | Abcam              | Mouse IgG1  | 1 to 30  |
| 89  | Thrombomodulin                | 1009       | Dako               | Mouse IgG1  | 1 to 30  |
| 90  | Transferrin                   | 29806      | R&D                | Mouse IgG1  | 1 to 100 |
| 91  | TSPAN8                        | 458811     | R&D                | Rat IgG2b   | 1 to 100 |
| 92  | uPAR                          | 62022      | R&D                | Mouse IgG1  | 1 to 100 |
| 93  | VEGF                          | VG1        | Dako               | Mouse IgG1  | 1 to 30  |
| 94  | VEGFR 2                       | KDR/EIC    | Abcam              | Mouse IgG1  | 1 to 100 |
| 95  | Vimentin                      | Vim 3B4    | Abcam              | Mouse IgG2a | 1 to 100 |
| 96  | Vimentin                      | 280618     | R&D                | Rat IgG2a   | 1 to 100 |
| 107 | \W/T1                         | 6F-H2      | Millipore          | Mouse IaG1  | 1 to 100 |

| Fluorophore | Biomarker      | Clone      | Company         | Species     | Dilution |
|-------------|----------------|------------|-----------------|-------------|----------|
| Alexa 647   | Anti Mouse     | Polyclonal | Cell Signalling | Goat        | 1 to 900 |
| FITC        | Anti Mouse     | Polyclonal | Abcam           | Goat        | 1 to 300 |
| Dylight 650 | Anti Rabbit    | Polyclonal | Abcam           | Goat        | 1 to 300 |
| PE/Cy7      | Anti Rat       | Poly4054   | Biolegend       | Goat        | 1 to 300 |
| Dylight 488 | Anti Rabbit    | Poly4064   | Biolegend       | Donkey Ig   | 1 to 300 |
| FITC        | Anti Mouse IgM | II/41      | eBioscience     | Rat IgG2a   | 1 to 150 |
| FITC        | Anti Rat IgG2a | RG7/1.30   | BD Pharmingen   | Mouse IgG2b | 1 to 150 |
| FITC        | Anti Rat IgG2b | G15-337    | BD Pharmingen   | Mouse IgG2b | 1 to 150 |
| FITC        | Anti Rabbit    | RG-96      | Sigma           | Mouse IgG1  | 1 to 150 |

Table S3. List of secondary antibodies used in the study.