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Sticky Cluster Model equations 

 

 
buffereffluxrelease

ss JJJ
dt

Cad


2

  (S1) 

 



RyRN

j
RyR

j
openrelease JRyRJ

1

 (S2) 

     SSJSR
SS

RyR
RyR CaCa

V

D
J   22   (S3) 

 ])[]([]][[ 2

,,
iTotali

i
offssi

SLSRCaMi

i
onbuffer BBkCaBkJ  


   (S4) 

 
    

efflux

SSmyo
efflux

CaCa
J



 


22

   (S5) 

 
 













refill
JSR

SS
releaseJSR

JSR J
V

V
J

dt

Cad 
2

 (S6) 

 
 

1

22 ][

][
1



 














JSRCSQ

CSQ

CaK

KCSQ
Total

JSR
  (S7) 

 
    

refill

JSRNSR
refill

CaCa
J



 


22

  (S8) 

 

RyR gating equations 
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Table S1 – Geometry Parameters 
Parameter Definition Value 
VSS Sub-space volume 1.0 × 10-12 L 
VJSR Junctional SR volume 1.6 × 10-12 L 
 
Table S2 – Fixed Ionic Concentrations 
Parameter Definition Value 

[ 2
MyoCa ] 

bulk myoplasmic Ca2+ concentration 0.1 mol/L 

[ 2
NSRCa ] 

NSR Ca2+ concentration 1.0 × 103 mol/L  

 
Table S3 - Buffering Parameters  
Parameter Definition Value 
[BCaM]Total Total calmodulin concentration 24 mol/L 
CaM
onk  

Calmodulin Ca2+ on rate constant 100 mol/L -1 s-1 

CaM
offk  

Calmodulin Ca2+ on rate constant 38 s-1 

[BSL]Total Total SL membrane buffer concentration 900 mol/L 

SL
onk  

SL membrane buffer Ca2+ on rate constant 115 µM-1 s-1 

SL
offk  SL membrane buffer Ca2+ off rate constant 1000 s-1 

[BSR]Total Total SR membrane buffer concentration 47 M 

SR
onk  

SR membrane buffer Ca2+ on rate constant 115 M-1 s-1 

SR
offk  

SR membrane buffer Ca2+ off rate constant 100 s-1 

[BCsq]Total Total calsequestrin concentration 30.0 × 103 mol/L 

KCsq Calsequestrin Ca2+ dissociation constant 630 mol/L 

 
Table S4 – RyR Parameters 
Parameter Definition Value 
DRyR RyR Permeability constant 2.2 × 10-9 µL s-1 
 RyR luminal dependence factor 1.0 × 10-3

 (unitless) 
NRyR Number of RyR channels in a cluster 28 
kopen,max maximum RyR opening rate 3 x 104 s-1 

kclose,max maximum RyR closing rate 480 s-1 

Kmax sensitivity of opening to subspace [Ca] 19.87 µmol/L 

 
Table S5 – Initial Conditions 
Parameter Definition Value 

[ 2
ssCa ] 

subspace Ca2+ concentration 0.1 mol/L 

[ 2
JSRCa ] 

JSR Ca2+ concentration 1.0 × 103 mol/L  
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Multivariable regression analysis 
The parameter sensitivities calculated from multivariable regression analysis (Fig. 3B) indicate 
how much each model parameter influences Ca2+ spark amplitude and Ca2+ spark duration.  
Here we illustrate through an example how these parameter sensitivities can be understood in 
quantitative terms.   

The multivariable regression procedure generates a linear model:  

 XBY ˆ  (S17) 

where X is a matrix of parameters, Ŷ the matrix of predicted model outputs, and B the 
regression matrix. For simplicity, here we consider the predicted change in a single model 
output (Δŷ) produced by a change in a single model parameter (Δx): 
 xby ˆ  (S18) 

where b is the relevant parameter sensitivity.   

Before performing the regression, parameters in X and outputs in Y are log-transformed.  Then 
the regression procedure converts the log-transformed values into z-scores by subtracting the 
mean and dividing by the standard deviation on a column-by-column basis.  Thus, to predict the 
value ŷ resulting from an arbitrary value of a parameter x, we compute: 
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where µy and µx are the mean values of the output and the parameter, respectively and σy and 
σx are the respective standard deviations.  Each parameter sensitivity shown in Fig. 3B is a 
scaled value b' = b·σy/σx.   

These scaled parameter sensitivities allow us to compute the percentage change in an output 
through the formula: 
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or, equivalently: 
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For example, the sensitivity coefficient b' describing how CSQ affects Ca2+ spark amplitude is 
equal to 0.45.  This implies that a 50% increase in CSQ leads to a 20% increase in spark 
amplitude because (1.5)0.45  = 1.20.   

Logistic regression analysis 
The parameter sensitivities calculated from logistic regression analysis (Fig. 4A) indicate how 
much each model parameter influences Ca2+ spark probability.  Here we illustrate through an 
example how these parameter sensitivities can be understood in quantitative terms.   

As described in the main text, the logistic regression model describes spark probability as a 
function of changes in the 18 model parameters: 
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where each variable xi represents a deviation from the baseline value.  Thus, when all 
parameters are equal to the baseline values, we have: 
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where we define P0 as the probability that a single RyR opening will trigger a Ca2+ spark with the 
baseline set of parameters.  P0 is equal to 976/2000 = 0.48 in this model.   

When a single parameter changes, the magnitude of the change and the corresponding 
parameter sensitivity b determine the new spark probability, as follows.  Remember that 
parameters are log-transformed and converted into z-scores before performing the logistic 
regression.  Thus, for a new value x of a particular parameter:  
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Subtracting Eq. S24 from Eq. S25, we obtain: 
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or: 
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As with the multivariable linear regression, we rescale parameter sensitivities, i.e. b' = b/σx. 
Thus: 
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and: 
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This shows how we can calculate a new probability from the baseline probability and the 
percentage change in a parameter.  For instance, the unscaled parameter sensitivity 
corresponding to parameter CaNSR (Fig. 4B) is equal to 1.26, and the standard deviation σx is 
equal to 0.29, so the scaled sensitivity b' is equal to 4.34.  At baseline, P0/(1-P0) = 0.48/0.52 = 
0.92.  Thus a 20% increase in CaNSR results in P/(1-P) = 2.03, or P = 0.67.  This is consistent 
with experimental results indicating that changes in SR [Ca2+] have a large effect on the rate of 
spontaneous Ca2+ sparks.   
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Generation of Receiver Operator Characteristic (ROC) curves 
From an initial set of 800 trials, 7 unique sets of 700 trials each were generated.  A logistic 
regression model built from each set of 700 trials was used to predict the probability that Ca2+ 
sparks would be produced in the remaining 100 trials.  In this way, the model was built and 
predictions were performed on different sets of simulation results.  The threshold for whether not 
a particular trial generated a spark was systematically varied from 0 to 1.  At each threshold we 
compared the logistic regression predictions with the simulation results by computing the true 
positive rate and the false positive rate as follows.  Each trial can be categorized as true positive 
(TP:  both simulation and regression indicate that a spark was triggered), a true negative (TN:  
both simulation and regression indicate that a spark was not triggered), a false positive (FP:  
regression predicts a spark whereas simulation indicates no spark), or a false negative (FN:  
regression predicts no spark whereas simulation produces a spark).  True positive rate (TPR) 
and false positive rate (FPR) were then calculated as:  

 
FNTP

TP
TPR


  (3) 

 
TNFP

FP
FPR


  (4) 

These two quantities were plotted against one another to produce the ROC curves shown in 
Fig. 4A.  Prediction strength was assessed by computing the area under the curve (AUC).  a 
random predictor has AUC=0.5 whereas a perfect predictor has AUC = 1.0. 
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Supplementary Figure S1. Schematic diagram of the sticky cluster model. RyR 
channels are present in the JSR apposed to the T-tubule, and opening of one RyR 
triggers Ca2+ release (Jrelease) from the RyR cluster. This released Ca2+ binds to buffers 
in the subspace and diffuses into the myoplasm (Jefflux). Release leads to local depletion 
of JSR [Ca2+], and this concentration returns to its original level by Ca2+ transfer from 
the NSR (Jrefill).  
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Supplementary Figure S2.  Schematic representation of input, sensitivity coefficient, 
and output matrices in the multivariable regression analysis. Input matrix (X) consists of 
the number of trials (row) and the number of z-scored and log-transformed parameters 
(column), and z-scored and log-transformed output matrix (Y). Sensitivity coefficient 
matrix (B) makes the product X*B a close approximation to Y.  
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Supplementary Figure S3. Prediction by logistic regression at different parameters were 
compared with stochastic simulation with (A) DRYR, (B) Kmax, (C) refill.  Each parameter is 
scaled by -30%, -15%, 0%, 15% and 30% for calculation and displayed as logarithm of scale 
factor for plotting. 
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Supplementary Figure S4.  Computational performance with CaNSR. (A) Prediction curves (540 
trials) of logistic regression with a standard deviation of 0.03. (B) Stochastic simulation data 
(240 trials: circles) with a standard deviation of 0.03. 
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Supplementary Figure S5. We estimated how sensitivity coefficients depend on the number of 
simulation (trials). We ran 2000 trials of stochastic simulations with randomly perturbed 
parameters. 976 subsets out of 2000 trials showed Ca2+ sparks. Parameter sensitivity 
coefficients on the spark amplitude were calculated at subsets of 976 trials. Each subset was 
randomly selected with trial size 55, 155, 355, 555, 775, and 975. This process was repeated for 
25 times to display at each trial. We chose five most important parameters for spark amplitude 
(A) [Ca2+]NSR, (B) NRYR, (C) DRYR, (D) CSQ, and (E) VJSR. This result shows that sensitivity 
coefficient converges as the trial size increases.  
 
 


