SUPPORTING MATERIAL

Parameter sensitivity analysis of stochastic models provides insights into cardiac calcium
sparks

Young-Seon Lee, Ona Z. Liu, Hyun Seok Hwang, Bjorn C.
Knollmann, Eric A. Sobie
Correspondence: eric.sobie@mssm.edu

Sticky Cluster Model equations

d|Ca™ |,
% = Jrelease + Jejﬂux + Jbtg[fer (81 )
NR)R
)elease zRyRopen RyR (82)
Jror :ﬂ([ a2+ SR _ [Ca2+1ys) (S3)

S

Jogr = Dk [BICa* 1~k ([Blw —[B])  (S4)

i=CaM ,SR,SL
[ca*],., ~[ca*]s)

Je Mo (85)
" T eftur
d [Ca 2 LSR V.
= ﬂ - ']re ease = + ']rez (86)
dt JSR l VJSR ofill
-1
B =1+ [CSQ 1, Keso (S7)
" (KCSQ +[Ca* ] )2
J o= ([Cd " ]NSR — [Ca2+ ]JSR) (S8)
refill Tmﬁ”
RyR gating equations
kclose = kclose,max CF‘close (89)
2+ 4
kUp@f’l = kopen,max CFUP@H ([Ca ]fs ) (81 0)
(ca* 1) +K?
_ _ 2+
Km - Kmax a[Ca ]JSR (811)
_ 2F
Kcoup - exp( %NR)/R _ 1)] (81 2)
CEzpen Kcaup(2 Woper 1= (S 1 3)
CF -K (2N ctosea +1=N gy ) (814)

close coup



Lee et al.

Stochastic parameter sensitivity analysis

Page 2

Table S1 — Geometry Parameters

Parameter Definition Value

Vss Sub-space volume 1.0 x 10 pL
Visr Junctional SR volume 1.6 X 10"% uL
Table S2 — Fixed Ionic Concentrations

Parameter Definition Value

[Cai[;o ] bulk myoplasmic Ca”" concentration 0.1 umol/L
[Caliy] NSR Ca”" concentration 1.0 x 10° umol/L

Table S3 - Buffering Parameters

Parameter Definition Value

[Bcam]Total Total calmodulin concentration 24 umol/L

Jo CeM Calmodulin Ca*" on rate constant 100 umol/L ™' s™!
kC;M Calmodulin Ca*" on rate constant 385"

[Bst ]Total Total SL membrane buffer concentration 900 pwmol/L

Jo St SL membrane buffer Ca’* on rate constant 115 uM™' 5™

k‘j‘f, SL membrane buffer Ca®* off rate constant 1000 5™

[Bsr]Total Total SR membrane buffer concentration 47 uM

SR SR membrane buffer Ca’* on rate constant 115 uM™ s

ki‘? SR membrane buffer Ca’* off rate constant 100 s

[BesqlTotar Total calsequestrin concentration 30.0 x 10’ pmol/L
Kegq Calsequestrin Ca’* dissociation constant 630 pmol/L

Table S4 — RyR Parameters

Parameter Definition Value

Dgryr RyR Permeability constant 22x10° uLs”

o RyR luminal dependence factor 1.0 x 107 (unitless)
Ngryr Number of RyR channels in a cluster 28

Kopen,max maximum RyR opening rate 3x10%s!

Kelose.max maximum RyR closing rate 480 s

Kinax sensitivity of opening to subspace [Ca] 19.87 umol/L

Table S5 — Initial Conditions

Parameter Definition Value
[Cal] subspace Ca”" concentration 0.1 umol/L
[CaigR] JSR Ca”" concentration 1.0 x 10° pmol/L
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Multivariable regression analysis

The parameter sensitivities calculated from multivariable regression analysis (Fig. 3B) indicate
how much each model parameter influences Ca*" spark amplitude and Ca®" spark duration.
Here we illustrate through an example how these parameter sensitivities can be understood in
guantitative terms.

The multivariable regression procedure generates a linear model:
Y = XB (S17)
where X is a matrix of parameters, Y the matrix of predicted model outputs, and B the

regression matrix. For simplicity, here we consider the predicted change in a single model
output (Ay) produced by a change in a single model parameter (Ax):

AP = Axb (518)
where b is the relevant parameter sensitivity.

Before performing the regression, parameters in X and outputs in Y are log-transformed. Then
the regression procedure converts the log-transformed values into z-scores by subtracting the
mean and dividing by the standard deviation on a column-by-column basis. Thus, to predict the
value y resulting from an arbitrary value of a parameter x, we compute:

log(y) —log(,) p log(x) —log(,)

- (S19)
o, lo2
y X
or.
A b ,
log(--) = 222 Jog(-5) (520)
/Lly O-x X

where u, and uy are the mean values of the output and the parameter, respectively and o, and
o, are the respective standard deviations. Each parameter sensitivity shown in Fig. 3B is a
scaled value b' = b-0,/0;.

These scaled parameter sensitivities allow us to compute the percentage change in an output
through the formula:

’ b'log(¥ )
B ) 21
lLly
or, equivalently:
~ b'
J_ (Lj 22)
Hy My

For example, the sensitivity coefficient b' describing how CSQ affects Ca?* spark amplitude is
equal to 0.45. This implies that a 50% increase in CSQ leads to a 20% increase in spark
amplitude because (1.5)*4° = 1.20.

Logistic regression analysis

The parameter sensitivities calculated from logistic regression analysis (Fig. 4A) indicate how
much each model parameter influences Ca®* spark probability. Here we illustrate through an
example how these parameter sensitivities can be understood in quantitative terms.

As described in the main text, the logistic regression model describes spark probability as a
function of changes in the 18 model parameters:

Supporting Material



Lee et al. Stochastic parameter sensitivity analysis Page 4

log(%j =by +bx, +...+ DX (S23)

where each variable x; represents a deviation from the baseline value. Thus, when all
parameters are equal to the baseline values, we have:

log[l POP J = b0 (S24)
—4o

where we define P, as the probability that a single RyR opening will trigger a Ca®* spark with the
baseline set of parameters. P, is equal to 976/2000 = 0.48 in this model.

When a single parameter changes, the magnitude of the change and the corresponding
parameter sensitivity b determine the new spark probability, as follows. Remember that
parameters are log-transformed and converted into z-scores before performing the logistic
regression. Thus, for a new value x of a particular parameter:

log[%j _ b, +p g ~logs,) (S25)

o
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Subtracting Eq. S24 from Eq. S25, we obtain:

10g(ij_log[ R ): plog-log) o
1-P 1-F, o

X

or:

(S26)

As with the multivariable linear regression, we rescale parameter sensitivities, i.e. b' = b/o,.

Thus:
;
= {i] (S27)
K,

b
P _h H (s27)

This shows how we can calculate a new probability from the baseline probability and the

percentage change in a parameter. For instance, the unscaled parameter sensitivity

corresponding to parameter Cansg (Fig. 4B) is equal to 1.26, and the standard deviation oy is

equal to 0.29, so the scaled sensitivity b’ is equal to 4.34. At baseline, Py/(1-Py) = 0.48/0.52 =

0.92. Thus a 20% increase in Caysr results in P/(1-P) = 2.03, or P = 0.67. This is consistent

with experimental results indicating that changes in SR [Ca®'] have a large effect on the rate of
spontaneous Ca?* sparks.

and:
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Generation of Receiver Operator Characteristic (ROC) curves
From an initial set of 800 trials, 7 unique sets of 700 trials each were generated. A logistic
regression model built from each set of 700 trials was used to predict the probability that Ca?*
sparks would be produced in the remaining 100 trials. In this way, the model was built and
predictions were performed on different sets of simulation results. The threshold for whether not
a particular trial generated a spark was systematically varied from 0 to 1. At each threshold we
compared the logistic regression predictions with the simulation results by computing the true
positive rate and the false positive rate as follows. Each trial can be categorized as true positive
(TP: both simulation and regression indicate that a spark was triggered), a true negative (TN:
both simulation and regression indicate that a spark was not triggered), a false positive (FP:
regression predicts a spark whereas simulation indicates no spark), or a false negative (FN:
regression predicts no spark whereas simulation produces a spark). True positive rate (TPR)
and false positive rate (FPR) were then calculated as:

TP

R= ™ )
TP+ FN
FP+TN

These two quantities were plotted against one another to produce the ROC curves shown in
Fig. 4A. Prediction strength was assessed by computing the area under the curve (AUC). a
random predictor has AUC=0.5 whereas a perfect predictor has AUC = 1.0.
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Supplementary Figure S1. Schematic diagram of the sticky cluster model. RyR
channels are present in the JSR apposed to the T-tubule, and opening of one RyR
triggers Ca®" release (Jreiease) from the RyR cluster. This released Ca** binds to buffers
in the subspace and diffuses into the myoplasm (Jefriux). Release leads to local depletion
of JSR [Ca®], and this concentration returns to its original level by Ca®* transfer from
the NSR (Jrefi”).
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Supplementary Figure S2. Schematic representation of input, sensitivity coefficient,
and output matrices in the multivariable regression analysis. Input matrix (X) consists of
the number of trials (row) and the number of z-scored and log-transformed parameters
(column), and z-scored and log-transformed output matrix (Y). Sensitivity coefficient
matrix (B) makes the product X*B a close approximation to Y.
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Supplementary Figure S3. Prediction by logistic regression at different parameters were
compared with stochastic simulation with (A) Dgryr, (B) Kmax, (C) tem. Each parameter is
scaled by -30%, -15%, 0%, 15% and 30% for calculation and displayed as logarithm of scale
factor for plotting.
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Supplementary Figure S4. Computational performance with Caynsg. (A) Prediction curves (540
trials) of logistic regression with a standard deviation of 0.03. (B) Stochastic simulation data
(240 trials: circles) with a standard deviation of 0.03.
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Supplementary Figure S5. We estimated how sensitivity coefficients depend on the number of
simulation (trials). We ran 2000 trials of stochastic simulations with randomly perturbed
parameters. 976 subsets out of 2000 trials showed Ca?* sparks. Parameter sensitivity
coefficients on the spark amplitude were calculated at subsets of 976 trials. Each subset was
randomly selected with trial size 55, 155, 355, 555, 775, and 975. This process was repeated for
25 times to display at each trial. We chose five most important parameters for spark amplitude
(A) [Ca*nsr, (B) Nryr, (C) Dgryr, (D) CSQ, and (E) V,sr. This result shows that sensitivity
coefficient converges as the trial size increases.
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