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Derivation of miRNA steady-state concentration

An approximate, explicit expression for the steady state miRNA level can be de-
rived starting from (9) of the Main Text. For simplicity, let us consider the case of
N = 2 ceRNAs, in which (8) of the Main Text reduces to the equation

[µ]
[
δ + b1z1F1([µ]) + b2z2F2([µ])

]
= β . (1)

We can work out its solutions explicitly depending on the regimes to which the
ceRNAs belong by inserting (9) of the Main Text into (1), using the relation wi =

zi µ0,i and keeping only linear terms in [µ]. One finds the following results:

(a) m1,m2 ∈ F :

[µ] '
β

δ +
∑

i bizi
(2)

(b) m1,m2 ∈ S :

[µ] '
β − 1

4
∑

i biwi

δ + 1
4
∑

i bizi
(3)
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(c) m1,m2 ∈ B :

[µ] '
β −

∑
i biwi

δ
(4)

(d) m1 ∈ B, m2 ∈ S :

[µ] '
β − b1w1 −

1
4 b2w2

δ + 1
4 b2z2

(5)

(e) m1 ∈ F , m2 ∈ B :

[µ] '
β − b2w2

δ + b1z1
(6)

(f) m1 ∈ F , m2 ∈ S :

[µ] '
β − 1

4 b2w2

δ + b1z1 + 1
4 b2z2

(7)

Extending to the general case of N ceRNAs we conclude that

[µ] '
β −

∑
i∈B biwi −

1
4
∑

i∈S biwi

δ +
∑

i∈F bizi + 1
4
∑

i∈S bizi
, (8)

The mirror system: one target, M miRNA species

The dual system in which M miRNA species, labeled µα (α = 1, . . . ,M), target
the same RNA m (to avoid confusion we will keep referring to it as a ceRNA even
though in this case it is not really competing, being the only target species), can be
worked out in full analogy with the case discussed above. In particular, defining
µ?α = βα/δα, we have that, at stationarity, the level of free miRNA species is given
by

[µα] = µ?αFα([m]) , (9)

where
Fα =

m0,α

[m] + m0,α
, m0,α =

δα
k+
α

(1 + ψα) (10)

with ψα = (k−α + κα)/σα. (Note that now rates carry the index of the correspond-
ing miRNA involved.) The free ceRNA level on the other hand results from the
algebraic equation

[m]

d +
∑
α

βαζαFα([m])

 = b , (11)
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where ζα = (σα + κα)/(m0,ασα). As before, each m0,α can be interpreted as ref-
erence level for the target which can be used to separate different regimes for the
miRNA species. Borrowing the terminology used in the previous case, we have

Fα([m]) '


1 − [m]/m0α α ∈ F
1
2 − ([m] − m0,α)/(4m0,α) α ∈ S

m0,α/[m] α ∈ B

(12)

where [m] � m0,α for a ‘free’ miRNA, [m] ' m0,α for a ‘susceptible’ miRNA, and
[m] � m0,α for a ‘bound miRNA. In turn, the level of free ceRNA is given by

[m] '
b −

∑
α∈B βαωα −

1
4
∑
α∈S βαωα

d +
∑
α∈F βαζα + 1

4
∑
α∈S βαζα

(13)

where ωα = ζα m0,α = (σα + κα)/σα, while for the susceptibility we obtain

χαγ ≡
∂[µα]
∂βγ

=
1
δα

[
Fα([m])δαγ +

βαζγχm,m

4[m]
WR(α),R(γ)

]
(14)

where χm,m =
∂[m]
∂b and the matrix Ŵ is the same as in (14) of the Main Text with

[m], m0,α and m0,γ replacing respectively [µ], µ0,i and µ0, j.
Therefore the cross-talk that is established between miRNAs is, as before, se-

lectively turned on only for species lying in particular regimes, defined by the free
ceRNA level. In complete analogy to the dual system analyized in the main text,
two types of effective interactions arise: the first one is symmetric encodes the
response of a miRNA in the S-regime to a perturbation of another miRNA in the
S-regime; the second one is asymmetric and encodes the response of a miRNA
in the S-regime to a perturbation of a miRNA in the B-regime. An example of a
pattern of interactions between miRNAs is shown in Figure 1. Note that the in-
tensity of the cross-talk is modulated by the factor ζγ and increases when the rate
of catalytic degradation increases. If σα → 0 for all α implies m0,α → ∞: in this
case, all miRNA species lie in the F -regime and no cross-talk is possible at steady
state.

The role of topology

Network topology can play an important role as a cross-talk enhancer. In specific,
we will now argue that ceRNA-ceRNA interactions can be mediated by a large
number of miRNA species which individually would only weakly dampen ceRNA
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Figure 1: Schematic representation of a system of one target RNA and M = 6
miRNAs species. In this case miRNA 3 is Bound, miRNAs 2 and 5 are Susceptible
and the remaining are Free from the target RNA. Cross-talk interactions pattern is
derived analogously to the dual case discussed in the main text: symmetrical cross-
talk interactions emerge between miRNA 2 and 5 and asymmetrical interactions
emerge from miRNA 3 to miRNAs 2 and 5.

levels. We consider a diluted network described by an adjacency matrix {Aiα} such
that

Aiα =

1 if ceRNA mi is targeted by miRNA µα

0 otherwise
(15)

making the following simplifying assumptions: (a) the network is kinetically ho-
mogeneous, i.e. rates are the same for all ceRNAs, so that µ0,iα = µ0 for each i and
α and bi = b, di = d for each i; (b) miRNA levels are uniform, i.e. [µα] = [µ] for all
α; (c) [µ]/µ0 ≡ t � 1, so that all ceRNA species are in the F -regime with respect
to any miRNA (i ∈ F (α) ∀i, α).

Consider a pair of ceRNAs mi and m j, targeted respectively by ni =
∑
α Aiα and

n j =
∑
α A jα miRNA species, ni j =

∑
α AiαA jα of which are in common. In this

case, the ceRNA concentration reads mi = m?/(1 + nit) (with m? = b/d) and the
cross-susceptibility (28) of the Main Text turns out to be given by

χi j,α =

 1
dKα

t
[1+t(n j−1)][1+t(ni−1)]2 if AiαA jα = 1

0 otherwise
(16)

where Kα ' [δ/(zb) +
∑

k∈α(1 + tnk)−1] and z is defined by the fact that ziα =
σ

(σ+κ)µ0
= z for each i and α. (The notation k ∈ α indicates all ceRNAs interacting
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with miRNA µα.) As expected, the dilution increases upon increasing the number
of ceRNAs interacting with a given miRNA species µα (each of them add a positive
term (1 + tnk)−1 to Kα thus making it larger) and upon increasing ni and n j, since

χαi j ∝
1

n jn2
i

(ni, n j � 1/t) . (17)

Consider now the particular case of a regular bipartite network with fixed
ceRNA and miRNA connectivity so that ni = n for each i and να ≡

∑
i Aiα = ν

for each α. Setting

Kα = K =
δ

zb
+

ν

1 + tn
(18)

for all α we clearly see that now each miRNA species contributes equally to the
overall susceptibility, i.e, χi j,α = χ0 for all i and j targeted by µα with

χ0 =
1

dK
t

[1 + t(n − 1)][1 + t(n − 1)]2 , (19)

while the overall susceptibility is given by χi j = ni jχ0. The contribution of a single
miRNA to the overall susceptibilities will depend on the value of t. In particular,
one easily sees that

χ0 =


t

dK ∼ O( εn ) for t � 1/n
1

dKn ∼ O( 1
n ) for t ' 1/n

1
dKt2n3 ∼ O( εn ) for t � 1/n

(20)

Generalizing the Free, Susceptible and Bound regimes, one realizes that the case
t � 1/n (resp. t ' 1/n and t � 1/n) describes a ceRNA that is ‘globally free’ (resp.
‘globally susceptible’ and ‘globally bound’) with respect to the overall miRNA
population. We therefore conclude that χi j

(i) increases with the number ni j of miRNA species shared by the ceRNAs mi

and m j;

(ii) decreases if the shared miRNAs have many other targets;

(iii) peaks when ceRNAs are ‘globally susceptible’ to the overall miRNA popu-
lation, and it can be of the same order of magnitude as the self-susceptibility,
i.e. O(1/d), when ni j ' n.

Perhaps most remarkably, the cross-talk can be effective even among ceRNAs
that are in the Free regime with respect to individual miRNAs, provided they are
commonly targeted by a large number of miRNA species thus becoming ’globally
susceptible’. However, in order to achieve efficient cross-talk strong correlations
in the network connectivity are needed (large ni j): highly clustered networks can
allow for much stronger cross-talk than random graphs (see Figure 2).
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1 2 1 2

A B

Figure 2: Two examples of different network structures with N = 2 ceRNAs
(blue circles) and M = 7 miRNAs (red squares). A) A highly correlated network
structure where ceRNAs share almost all of their regulators (n1 = n2 = 5, n12 = 4).
B) A poorly correlated structure where ceRNAs share a small fraction of their
regulators (n1 = n2 = 4, n12 = 1). Cross-talk will tipically be much stronger in A
than in B.

The miRNA-decoy transcript

Many miRNAs (possibly about 50% of the total [1]) are hosted in non-coding
genes whose transcript can incur a dual fate: after transcription, the precursors
can either be processed into mature miRNAs through a series of steps involving
proteins DROSHA and DICER, or they can reach the cytoplasm unprocessed in
the form of long non-coding RNAs (lncRNAs). The RNA sequence close to the
sites corresponding to the miRNA presents a region with a sequence that is almost
complementary to that of miRNA. These proximal strings allow for the miRNA
precursor (pri-miRNA) to take on the peculiar hairpin structure that is essential
for the recognition by the processing proteins and thus for miRNA maturation [2].
It also follows, however, that the RNA sequence close to the miRNA necessarily
contains a good potential binding site for the miRNA itself. When matured into
lncRNAs, such transcripts are thus targeted by the miRNA and represent efficient
‘miRNA traps’ or decoys, through which the population of miRNAs available for
target repression can be regulated. The above miRNA-decoy mechanism can be
modeled with following processes (see also Fig. 3):

∅
b
→ q q

rα
→ m q

r(1−α)
→ µ , (21)
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Figure 3: Schematic representation of the model of a miRNA-decoy transcript.

including transcription of the long non-coding RNA q at rate b, transport of q to the
cytoplasm with processing into mature miRNA µ at rate (1 − α)r, and transport of
q to the cytoplasm αr. The quantity 1−α ∈ [0, 1] thus gives the fraction of miRNA
produced over the total number of transcribed RNAs.

At stationarity, the miRNA and the lncRNA m are produced at constant rates
according to

ṁ = bα (22)

µ̇ = b(1 − α) (23)

If noise affects both the transcription rate b and the processing efficiency α (tak-
ing again Gaussian distributions with means b and α and variances σ2

b and σ2
α,

respectively), the covariance between production rates is easily seen to be given by

ṁ µ̇ − ṁ µ̇ = σ2
b(α − α2) − σ2

αb2 (24)

Hence noise in b and α induces noise at the level of molecular concentrations,
yielding either positive or negative correlations between the steady state production
rates of the miRNA µ and of the decoy m as shown in Figure 4. (Clearly, this
conclusion holds as long as the noise on α is sufficiently small, or A is not too
close to 1.)

These correlations, in turn, can result in a change of steady state fluctuations of
other competing RNAs through the usual miRNA-mediated channels. In the case
of muscle differentiation discussed in [3], large levels of noise at the transcriptional
or at the processing level could be exploited in order to increase cell variability and
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Figure 4: Pearson correlation coefficient between the production rate of miRNA µ

and of decoy m, for different values of the processing noise level (A ≡ σ2
α/[α(1−α)]

on the x axis) and of the transcription noise level (B ≡ σ2
b/b

2 on the y axis). High
level of processing noise gives rise to negative correlations, while low level of pro-
cessing noise and high level of transcriptional noise result in positive correlations.

give rise to the differentiation program. Such a mechanism could be shared by
other miRNA genes representing a widespread network motif.

On the significance of the conditional mutual information
as a means to signal cross-talk

Consider a system (t,m, µ) of 2 ceRNAs (a target t and a modulator m and N back-
ground targets) and one miRNA µ, subject to transcriptional fluctuations. Let us
say that the experimental readouts concern the quantities

[m]xp = [m] + [cm] (25)

[t]xp = [t] + [ct] (26)

[µ]xp = [µ] + [cm] + [ct] (27)

where [ct] and [cm] represent the levels of miRNA-target and miRNA-modulator
complexes, respectively. Suppose that both complexes decay catalytically, i.e. that
the rates of stoichiometric complex degradation σm = σt = 0. In such conditions
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no cross-talk is possible at steady state. Furthermore, let us assume that the tran-
scription rates bt, bm, and β are drawn from a probability distribution P0(bt, bm, β)
such that

P0(bt, bm, β) ≡ P(bt, β)δ(bm − k) (28)

with P an unspecified probability distribution with finite covariance (i.e., that the
target and miRNA transcription rates are random variables while the modulator
transcription rate is fixed at k). We want to show that, in this case, ∆I([t]xp, [µ]xp; [m]xp) >
0 (with ∆I defined in (37) of the Main Text) necessarily. This would imply that the
condition ∆I([t]xp, [µ]xp; [m]xp) > 0 cannot be considered as a sufficient condi-
tion for cross-talk, since knowledge of [m]xp can increase the mutual dependence
between [µ]xp and [t]xp even in absence of cross-talk.

To see this, note that the measured steady state levels are stochastic variables
which depend on the transcription rates as

[m]xp = fm(β) (29)

[µ]xp = fµ(bt, β) (30)

[t]xp = ft(bt, β) (31)

(with fm, fµ and ft unspecified functions). Now let us focus on (29) and (30). Given
their monotonicity with respect to each of the variables on which they depend, they
can be inverted:

β = f −1
m ([m]xp) (32)

bt = f −1
µ ([µ]xp, β) (33)

Hence it is possible to express [t]xp as a function of [m]xp and [µ]xp directly: [t]xp =

h([m]xp, [µ]xp). In other terms, one finds a deterministic dependence of [t]xp on
[m]xp. This implies that for each fixed [m]xp the mutual information between [t]xp

and [µ]xp diverges. As a consequence, their mutual information averaged over
[m]xp,

〈
I([t]xp, [µ]xp)

〉
[m]xp

, diverges as well. At the same time, however, the mutual
information between [t]xp and [µ]xp stays finite due to the noise on bt and β. Hence

∆I([t]xp, [µ]xp; [m]xp) ≡
〈
I([t]xp, [µ]xp)

〉
[m]xp
− I([t]xp, [µ]xp) > 0 (34)

necessarily.
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