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I. Probing the fluorescently-labeled pericellular matrix shows beads penetrate into PCM 
 
Movie S1 shows a three micron passivated microsphere carried towards a living cell whose 
pericellular matrix has been labeled with neurocan-GFP (which binds to hyaluronan). The bead 
visibly enters into the cell coat, as seen by the fluorescent material that surrounds the bead as it 
moves closer to the cell surface. In principle, a cross-linked matrix might be impenetrable or at 
least partially deform as a particle moves into it. 
 
II. Probing the cell coat with two holographic traps shows no force coupling between the 
beads 

 

 
Fig. S1 The monitored force on the inner bead during the two bead HOT experiments. The force 
remains constant as the second probe is carried into the matrix. This supports the observation that 
forces are not easily transmitted through the matrix from one bead to the other, providing 
evidence that minimal crosslinking is present.   
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III. Estimating the pressure profile from the equilibrium force curve 
 

 
 

Fig. S2 Schematic of osmotic pressure gradient on a bead as a result of a varying concentration 
(green) in the cell coat. 
 
The relationship between the equilibrium force and the local pressure on the bead is 
 

  

€ 

 
F osm (z) = P(z')d

 
A ∫       Eq. S1

 

 
where P is the pressure, z is the distance from the cell membrane to the center of the bead, and   
z’ is the distance to the outside of the bead, as illustrated in Fig. S1. 
 
Since the pressure acts in the inward radial direction on the bead, we rewrite Eq. S1 as 
 

  

€ 

 
F osm (z) = − P(z')dA∫ ˆ R      Eq. S2. 
 
Considering that the experiment is symmetric in every direction but z, we rewrite the above as 
 

  

€ 

 
F osm (z) = − P(z')cosθdAˆ z ∫       Eq. S3  
 
 Replacing z’ with z’= z - Rcosθ, where θ is the standard spherical coordinate, gives 
 

  

€ 

 
F osm (z) = − P(z − Rcosθ)cosθdAˆ z ∫     Eq. S4  
 
where R is the bead radius. Integrating the surface element dA over r and φ gives 
dA=2πR2sinθdθ, since their contributions are constant and independent of θ. This results in  
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F osm (z) = − P(z − Rcosθ)2πR2 sinθ cosθdθˆ z 

0

π

∫    Eq. S5  
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Setting x = Rcosθ, the force becomes 
 

  

€ 

 
F osm (z) = −2π P(z − x)xdxˆ z 

−R

R
∫       Eq. S6  

 
Now, Taylor expanding P(z-x) around z 
 

 
 Eq. S7  

 
and using and the chain rule which gives 
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∂P(z)
∂ ʹ′ z 
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∂z

∂z
∂ ʹ′ z 

 where ,  the integral 

for the force becomes: 
 

 
  Eq. S8  

 
 
Due to the limits of integration, the terms odd in x above drop out yielding 
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Assuming that the solution for the pressure has an exponential dependence 
 

         Eq. S10  
 
and using the experimental observation that the equilibrium force has an exponential dependence 
with known parameters a and c, 
 

         Eq. S11 
  
we can solve Eq. S9 to find an approximate solution for the pressure.  It is apparent that d=c, 
while the relation between a and c is found to be 
 

  
      Eq. S12  
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Since we know that c=0.5 and that R=1.5, we have cR = 0.75. This gives 0.1(cR)3=.04 and 
therefore we can neglect the 3rd and higher order terms. The final approximate expression for the 
pressure profile is  
 

        Eq. S13  

 
 

 
Fig. S3 Pressure profile of the coat using the approximate solution in Eq. S13 and the parameters 
(a,c) acquired from optical force probe assays. 
 
 
To check the approximations made above, we can take a slightly different approach starting from 
 

   
Eq. S14 

 
 
If we assume that the pressure has an exponential form (Eq. S10), we can solve for the exact 
expression for the pressure:  
 

  
Eq. S15  

 
Considering that from the data the equilibrium force has an exponential dependence with known 
parameters a and c, we can solve for the parameters d and h to find the pressure: 
  

  Eq. S16. 
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Again we find that d=c.  Solving for h yields the an exact expression for the pressure profile 
throughout the pericellular matrix, 
 

  
Eq. S17 

 
This exact solution can be compared with the first order solution (Fig. S4), verifying that it is 
sufficient to use the first order approximation (Eq. S13) for the pressure profile.   
 
 
This expression can then be used to relate the pressure profile to the correlation length versus 
distance to the cell surface throughout the pericellular matrix: 
 

  
Eq. S18  

 
 
giving a correlation length profile with an exponential variation in space,  
 

  Eq. S19.  
 

 

 
 

Fig. S4 Comparison of the first order solution (Eq. S13) to the exact solution (Eq. S17) for the 
pressure profile in the pericellular matrix, where to find Eq. S17 it was assumed that the pressure 
has an exponential profile.  
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IV. Quantitative Particle Exclusion Assays  – A summary of the data 
 
 

Bead diameter (nm) Effective thickness, deff (µm) N 
40 1.4 ± 0.3 31 
100 3.3 ± 0.4 43 
200 5.2 ± 0.6 40 
300 6.7 ± 0.5 65 
400 7.1 ± 0.7 38 
500 8.5 ± 0.8 59 
2000 8.1 ± 0.9 58 
3000 8.6 ± 1.4 19 

 
Table S1 Full results from the quantitative particle exclusion assay (qPEA) including data not 
shown in the text. The effective thickness is the distance where the bead concentration becomes 
constant, indicating beads of that size can easily access that portion of the pericellular matrix. deff 
is an average number extracted from the analysis of intensity profiles of the bead distributions 
from N cells for each bead size. Error reported is twice the standard error. 
 

 
 
Fig. S5 The effective thickness increases with probe size until it plateaus at ~8.5 µm where 
probes 500 nm in diameter and larger are excluded from the PCM completely. The change in deff 
indicates that the cell coat acts like a sieve. 
 
 


