Supplemental Methods

Stimulated Emission Depletion (STED) confocal microscopy. ATTO-647N labeled Phalloidin (30 nM in 1% DMSO, Atto-tec, Siegen, Germany) was applied to plated DRGs for 10 min prior to being fixed, washed and mounted following specific guidelines for sample preparation (48). High-resolution images shown in SFig. 3 were obtained using a Leica TCS SP5 STED confocal system (Leica Microsystems, Wetzlar, Germany) equipped with an oil immersion objective (HCX PL APO CS 100x/1.40NA STED). A 635nm pulsed diode laser (PicoQuant, Germany) was used for excitation. The pulses for STED depletion were delivered using a tunable ultrafast Ti:Sapphire laser (Mai Tai® Broadband, Spectra-Physics, CA) emitting at a wavelength of 750 nm. Red fluorescence emitted from an ATTO 647N–labeled Phalloidin was collected through a Semrock BrightLine® 685/40-25 nm band pass filter (FF01-685/40-25, Semrock, Rochester, NY) in front of an avalanche photodiode (APD, PerkinElmer, Waltham, MA).

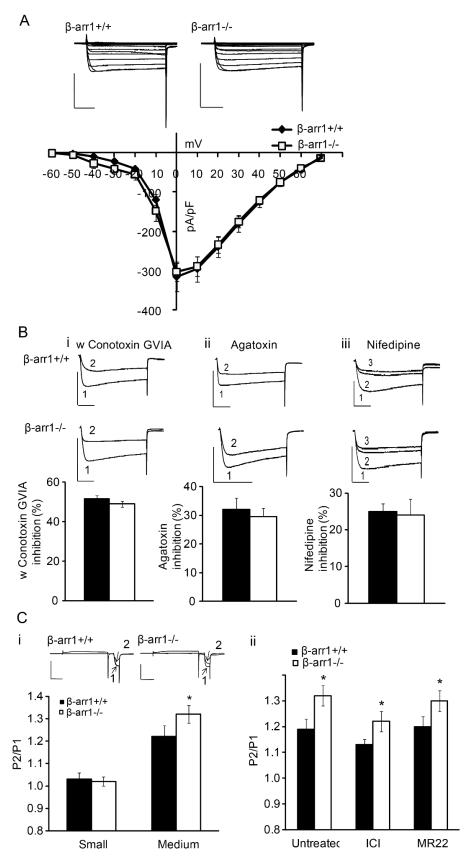
Suppemental Figure Legends

SFig. 1 Ca^{2+} channel density, type and constitutive δOR -VDCC coupling are not regulated by β arr1- related to Figure 1. A.i. A successive voltage step protocol was used to examine Ca²⁺ current density. Examples of these recordings from early postnatal β -arr1-/- and +/+ neurons are shown above the line graph, which in depicting the current-voltage relationship (ii), indicates no effect of β -arrestin 1 on Ca²⁺ current density. B. The relative contribution of the N, P/Q and L-Ca²⁺ channels to the Ca²⁺ current was also examined by inhibiting each channel. i. After obtaining a stable basal Ca²⁺ current (1), ω -Conotoxin GVIA (10µM, 1% cytochrome C) was used to inhibit the N-type channel (2). ii. A similar protocol was used to inhibit the P/Q-type channels before (1) and during (2) the application of Agatoxin IVA (100nM). iii. The

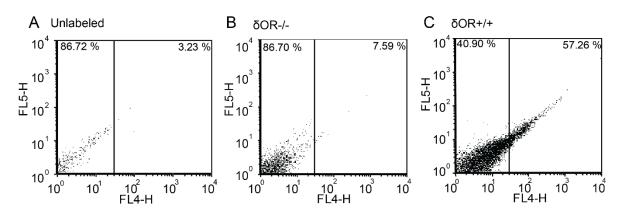
contribution of the L-type channels was assessed by Nifedipine (3, 10µM, 0.1% DMSO) after a stable baseline was obtained (1) and the N-type was fully inhibited by ω -Conotoxin GVIA (2). The resulting inhibition, expressed as a percent of the total Ca²⁺ current, showed no effect of genotype on the relative contribution of the N (i) , P/Q (ii) or L-type (iii) Ca²⁺ currents. C. Constitutive inhibition of the VDCCs was examined by a 2-step protocol. Examples of this protocol, which uses a high voltage pre-pulse to dissociate constitutively coupled G_{βγ} subunits from Ca²⁺ channels are shown (i), 1 indicates the current measured without a pre-pulse (P1) and 2 (P2) that recorded after the pre-pulse is applied. The P2/P1 ratio, reflecting constitutive Ca²⁺ channel coupling, was increased in the large, but not small DRG neurons. This ratio was further enhanced in β-arr1-/- neurons. ii. However, ICI 174.864, a δOR inverse agonist, could not reverse the enhanced effect in the β-arr1-/- neurons suggesting that although there is evidence of enhanced constitutive coupling of G_{βγ} subunits with VDCCs, this is not mediated by δORs. All pooled data are shown as mean±SEM.

SFig. 2 *Flow Cytometry assessment of \delta OR antibody specificity- related to Figure 2.* DRG neurons from $\delta OR +/+$ and -/- early postnatal mice were cultured for 48h, re-suspended and labeled with an antibody to the N-terminus of the human δOR sequence (MBL) followed by an APC-conjugated secondary and analyzed by flow cytometry. Unlabeled $\delta OR+/+$ neurons that had not been incubated with either antibody were included. Using the same template as shown in Fig. 2Ci to select medium-large sized neurons, scatterplots of the fluorescence intensity of the unlabeled and labeled $\delta OR-/-$ and +/+ neurons are shown (1 dot=1 cell). These plots show no

2

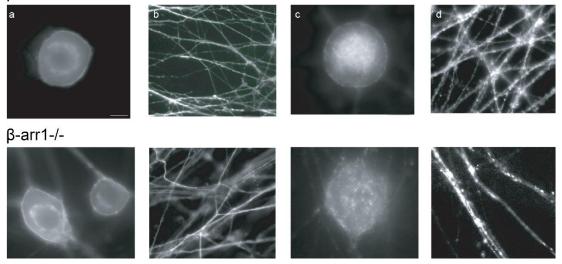

difference in labeling between the unlabeled and δOR -/- samples whereas the δOR +/+ sample shows a greater percentage of APC or δOR -positive cells.

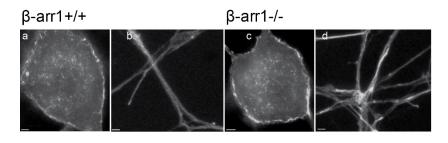
SFig. 3 *SNC80 internalizes cerulean-tagged \delta ORs in both* β *-arr1+/+ and -/- DRG neuronsrelated to Figure 2.* After 1h of SNC80 (1µM), virally expressed cerulean-tagged δORs , demonstrate equivalent internalization, when imaged by epifluorescence, in cultured β -arr1+/+ and -/- DRG neurons. The cell bodies and processes from untreated DRGs are shown in a and b respectively whereas c and d show the cell bodies and processes from SNC80-treated DRG neurons. The top and bottom rows are of β -arr1+/+ and -/- neurons. Scale-bar=10µm. Images were acquired on a Nikon TE2000 using a 60x objective and imaged by a Retiga1300 CCD and Iplab v4 (Qimaging, Ontario, CA).


SFig. 4 *Basal F-actin incorporation is not altered in \beta-arr1-/- neurons- related to Figure 4*. β -arr1+/+ and -/- neurons were incubated with Phalloidin-Atto647N for 10 min at 37°C, fixed and imaged by STED microscopy. There was no apparent effect of genotype on Phalloidin incorporation in the cell bodies and processes of β -arr1+/+ (a and b respectively) and -/- (c and d respectively) neurons. Scale-bar=2µm.

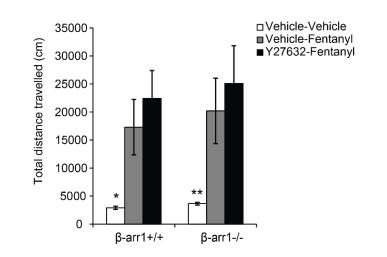
SFig. 5 *The behavioral effects of a delta agonist are similarly enhanced in* β *-arr1-/- and* +/+ *mice in the C57BL/6 background- related to Figure 5.* A. Fentanyl produced a hyperlocomotor response in β -arr1+/+ (p<0.05, F_{2,21}=5.03 locomotion x treatment) and in β -arr1-/- mice (p<0.01, F_{2,23}=7.80 locomotion x treatment), which was unaffected by pretreatment with the ROCK inhibitor, Y27632. Furthermore, no differences were observed in fentanyl-induced locomotion between the two genotypes (p=0.92, F_{1,10}=0.01), *p<0.05 vs. other treatment groups. B. SNC80 (1mg/kg s.c.) produced a hyperlocomotor response in β-arr1+/+ (p<0.05, F_{1,17}=6.31 vs. vehicle), β-arr1-/- (p<0.001, F_{1,19}=78.13 vs. vehicle), β-arr2+/+ (p<0.01, F_{1,18}=9.62 vs. vehicle), as well as, β-arr2-/- (p<0.05, F_{1,17}=7.85 vs. vehicle) in the C57B1/6 background. However, this effect was enhanced in β-arr1-/- mice as compared to the other three groups (p<0.05, F_{3,33}=4.255 locomotion x genotype) **p<0.01, *p<0.05 vs. other groups receiving the same treatment. C. The Von-Frey test for mechanical allodynia was used to measure sensitivity to mechanical pain on the plantar surface of the right paw after vehicle or SNC80 (5 mg/kg s.c.). While both groups showed similar basal responses (p=0.98), and SNC80 had no effect in β-arr1+/+ mice, β-arr1-/- mice responded less than +/+ mice 20 and 40 min after the SNC80 injection (p<0.001, F_{1,27}=53.41 vs. β-arr1+/+). All data are shown as mean±SEM.

SFig. 1

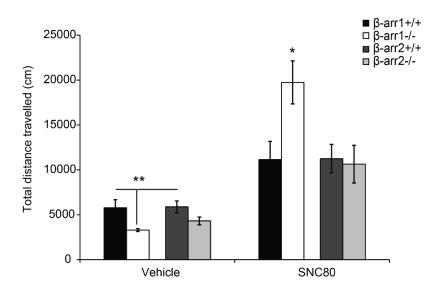


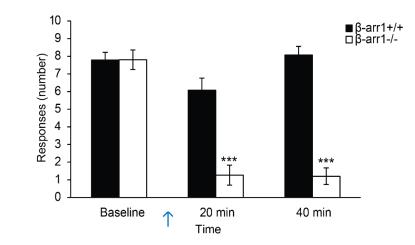


SFig 3


β-arr1+/+

SFig. 4





В

С

А

