Stem Cell Reports, Volume 1

Supplemental Information Derivation and FACS-Mediated Purification of PAX3+/PAX7+ Skeletal Muscle Precursors from Human Pluripotent Stem Cells Bianca Borchin, Joseph Chen, and Tiziano Barberi

SUPPLEMENTAL INFORMATION INVENTORY

A total of three figures with relative legends and two tables are included.

Figure S1 is related to Figure 1 and provides supporting information about the effect of GSK3 β inhibition.

Figure S2 is related to Figure 4 and adds data about the progression of the myogenic program in sorted populations.

Figure S3 is related to Figure 6 and demonstrates the comparable efficiency of myogenic induction across all four hPSC lines.

Table S1 is a list of all the primers used in this study.

Table S2 is a list of all antibodies used in this study.

SUPPLEMENTAL INFORMATION

Day 30

DAPI

PAX3

PAX7

DAPI

PAX3

PAX7

CXCR4+/C-MET+

FIGURE LEGENDS

Figure S1. CHIR treatment promotes induction of dorsal tissue in differentiating hPSC. Immunocytochemical analysis of hESC (H9) at day 12 of differentiation under treatment conditions, showing (A) Neural crest marker SOX10 (green), dorsal neural tube/roof plate marker LMX1a (red) and (B) SOX10 (green) and non-neural ectoderm marker AP2 α (red) Scale bars: 50 µm. (C) RT-PCR analysis for *LMX1a*, *SOX10* and *AP2\alpha* expression at day 10 of hESC (HES3) differentiation. *SOX10* and *LMX1a* are expressed only in CHIR treated cells while *AP2\alpha* expression is detected also in untreated cells.

Figure S2. Developmental progression of hPSC-derived myogenic cell populations. Representative immunocytochemical analysis on cytospin preparations of progenitor population's CXCR4-/C-MET+ and CXCR4+/C-MET+ at days 23, 25 and 30 of hESC (MEL1) differentiation. Expression of early myogenic regulatory genes SIX4 and PAX3 is detectable as early as day 23, prior to PAX7 expression as expected during myogenic lineage progression. As development proceeds (days 25-30), an increase in PAX7 expression is observed. Scale bars = 50 μm

Figure S3. Quantification of ACHR+ CXCR4-/C-MET+ and CXCR4+/C-MET+ cell populations derived across independent cell lines. Percentage of myogenic cell populations isolated at day 35 from four hPSC lines differentiated under treatment conditions (CHIR+FGF2). Efficiency of myogenic differentiation was similar across all cell lines. Results shown for each cell population represents n = 3 experiments averaged for each of the 4 hPSC lines.

Table S1

GENE	ORIENTATION	SEQUENCE 5' to 3'		AMPLICON LENGTH bp
IBX1*	forward	AAAGTCGCGCACGGCCTTCA	59	249
	reverse	GCCAGCGCCACGATGTCCAT		
PAX7*	forward	ACCCCTGCCTAACCACATC	60	121
	reverse	GCGGCAAAGAATCTTGGAGAC		
PAX3*	forward	TACAGGTCTGGTTTAGCAAC	57	183
	reverse	GATCTGACACAGCTTGTGGA		
MYF5	forward	TTCTCCCCATCCCTCTCGCT	59	235
	reverse	AGCCTGGTTGACCTTCTTCAG		
MYH2	forward	CCGCCCTTGACAAAAGCAA	55	220
	reverse	GCGCAGGATCTTTCCCTCTT		
ACHR	forward	GCTAACCCTCACCAACCTCAT	59	346
	reverse	GGTTGCTGCACTTTGGTCC		
MYOD*	forward	GCGCGCTCCTGAAACCCGAA	60	166
	reverse	TCGGCGTTGGTGGTCTTGCG		
TBX6*	forward	TTCCCGGCTCTCACCTCCGT	60	143
	reverse	TGGCCTGCACCAGTGTGTGT		
MESP1*	forward	CACACCTCGGGCTCGGCATAAA	60	119
	reverse	CAGGCCGCAGAGAGCATCCAG		
GAPDH*	forward	CCCCTTCATTGACCTCAACTACA	60	342
	reverse	TTGCTGATGATCTTGAGGCTGT		
SIX4*	forward	CCATGCTGCTGGCTGTGGGAT	60	164
	reverse	AGCAGTACAACACAGGTGCTCTTGC		
PARAXIS*	forward	AGGGCCACGGAGATGAGCCT	61	120

	reverse	GGTCCCCCGGTCCCTACACA		
SIX1*	forward	GTCCAGAACCTCCCCTACTCC	50	101
	reverse	CGAAAACCGGAGTCGGAACTT		
SOX10	forward	CCCACACTACACCGACCAG	59 14	
	reverse	GGCCATAATAGGGTCCTGAGG		
MSGN1*	forward	GGAGGCGGAAAGCCAGCGAGA	60	193
	reverse	CTGGGCTCTCTGCCGCGGTTA		
T*	forward	CGATCCTGGGTGTGCGTAA	55	220
	reverse	GACCAAGACTGTCCCCGCT		
SOX1	forward	GAGCTGCAACTTGGCCACGAC	60	271
	reverse	GAGACGGAGAGGAATTCAGAC		
AP2a	forward	AGGCAGAGCCAGGAGTCTGGGCT		
	reverse	CGGAGCACTCCGCCCAGCAGCGA	60	464
LMX1A	forward	TCCTAGCCTTGGAGAAGCAACT		
	reverse	CAGTGACTGGAGCAGAGAGAA	59	271

* Primers used for Quantitative PCR

Table S2

PRIMARY ANTIBODIES						
ANTIGEN	FLUOROCHROME	HOST/CLONALITY	DILUTION	COMPANY		
Human HGF/C-MET	APC	mouse IgG1	1:50	R&D Systems		
CXCR4 (CD184)	Brilliant Violet 421	Mouse IgG2a	1:200	BioLegend		
Mab 35 (ACHR)		Mouse IgG1	1:100	DHSB*		
Human CD57 (HNK-1)		mouse IgM	1:200	Sigma Aldrich		
PAX3		mouse lgG2a	1:100	R&D Systems		
Pax7		mouse IgG1	1:100	DHSB		
Myf5		rabbit polyclonal	1:100	Santa Cruz Biotechnology		
Myogenin		mouse IgG1	1:100	Santa Cruz Biotechnology		
MyoD		rabbit polyclonal	1:100	Santa Cruz Biotechnology		
MF20		mouse IgG2b	1:100	DSHB		
MYHC2		mouse IgG2a	1:100	DHSB		
SOX1		goat IgG	1:100	R&D Systems		
PARAXIS		goat IgG	1:100	Santa Cruz Biotechnology		
Sox10		goat polyclonal	1:100	R&D Systems		
AP2a		mouse IgG2b	1:100	DHSB		
LMX1A		rabbit polyclonal	1:200	Abnova		
Six4		Mouse IgG1	1:100	Abnova		
SECONDARY ANTIBODIES						
Anti-rabbit IgG (H+L)	Alexa Fluor 647	donkey	1:400	Molecular Probes (Invitrogen)		
Anti-goat IgG (H+L)	Alexa Fluor 647	donkey	1:400	Molecular Probes (Invitrogen)		
Anti-goat IgG (H+L)	Alexa Fluor 488	donkey	1:400	Molecular Probes (Invitrogen)		
Anti-mouse IgG2a	Alexa Fluor 555	donkey	1:400	Molecular Probes (Invitrogen)		
Anti-mouse IgG(H+L)	Alexa Fluor 488	goat	1:400	Molecular Probes (Invitrogen)		
Anti-mouse IgG2b	Alexa Fluor 555	donkey	1:400	Molecular Probes (Invitrogen)		
Anti-mouse IgG1	Alexa Fluor 647	goat	1:400	Molecular Probes (Invitrogen)		
Anti-mouse IgM	Alexa Fluor 555	goat	1:400	Molecular Probes (Invitrogen)		
Anti-rabbit IgG (H+L)	Alexa Fluor 488	goat	1:400	Molecular Probes (Invitrogen)		

Anti-mouse IgG1 (H+L)	Alexa Fluor 555	goat	1:400	Molecular Probes (Invitrogen)
Anti-mouse IgG1	PE	goat	1:400	Molecular Probes (Invitrogen)

* (Developmental Hybridoma Studies Bank)