Stem Cell Reports, Volume 1

Supplemental Information

Identification of Transcription Factors

for Lineage-Specific ESC Differentiation

Kohei Yamamizu, Yulan Piao, Alexei A. Sharov, Veronika Zsiros, Hong Yu, Kazu Nakazawa, David Schlessinger, and Minoru S.H. Ko

Inventory of Supplemental Information

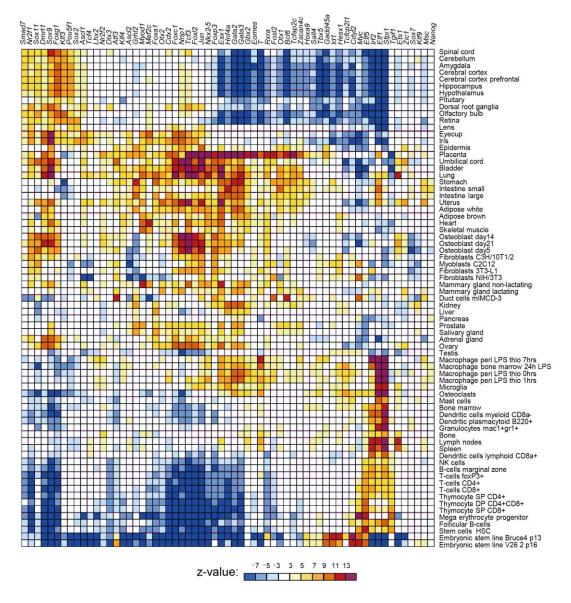
1. Supplementary Figure S1-S7

Supplemental Figure S1. Correlation of gene expression response to the induction of TFs with tissue-specific gene expression. – related to Figure 1-5

Supplemental Figure S2. FACS analysis for mesoderm, endoderm, and neural progenitor markers using ES cells carrying *Myod1*, *Hnf4a*, or *Ascl1* gene – related to Figure 2, 3, and 5.

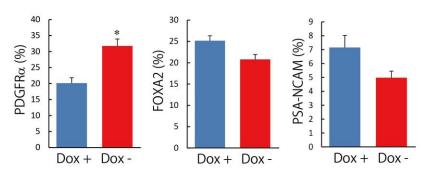
Supplemental Figure S3. Immunostaining for endoderm and hepatocyte markers, at differentiation 7 days using ES cells carrying *Hnf4a*, *Foxa1*, *Gata2*, *Gata3*, or *Gbx2* gene – related to Figure 3.

Supplemental Figure S4. Immunostaining for pan-neuron markers at differentiation 5 and 7 days using ESCs carrying *Ascl1* gene – related to Figure 5.

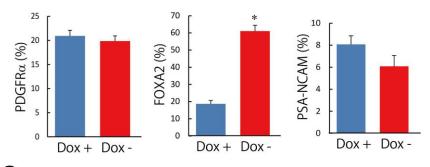

Supplemental Figure S5. Heat map from microarray data demonstrating global gene expression pattern in differentiated cells by induction of Foxal – related to Figure 6.

Supplemental Figure S6. qPCR for linage specific-genes at differentiation 7 days – related to Figure 6.

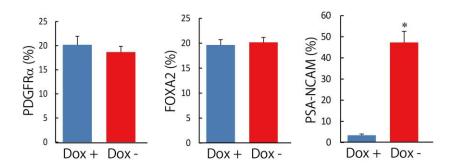
Supplemental Figure S7. Myogenic cells or neurons are induced by synthetic mRNA in a dose-dependent manner – related to Figure 7.


2. Supplemental Table

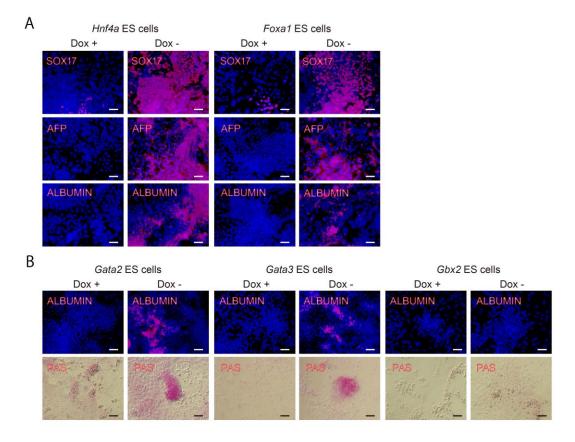
Supplemental Table 1. Primer list for ChIP – related to Figure 6.



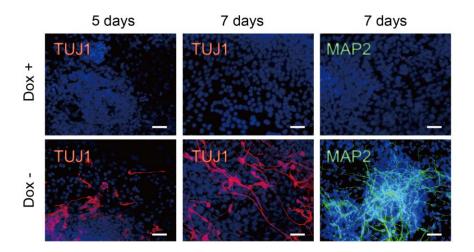
Supplemental Figure 1 Correlation of gene expression response to the induction of TFs with tissue-specific gene expression from the GNF ver.3 database (Figure reproduced from Correa-Cerro et al., 2011).


A Myod1 ES cells

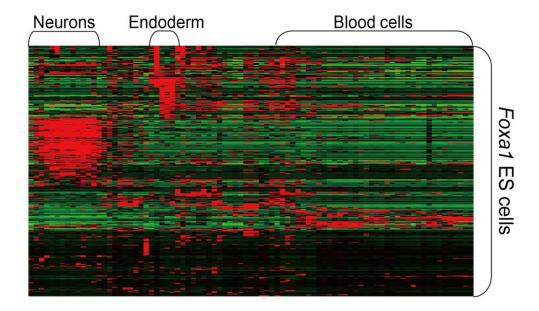
B Hnf4a ES cells



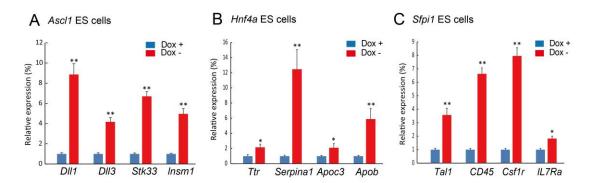
C Ascl1 ES cells


Supplemental Figure 2 FACS analysis for mesoderm, endoderm, and neural progenitor markers using ES cells carrying *Myod1*, *Hnf4a*, or *Ascl1* gene.

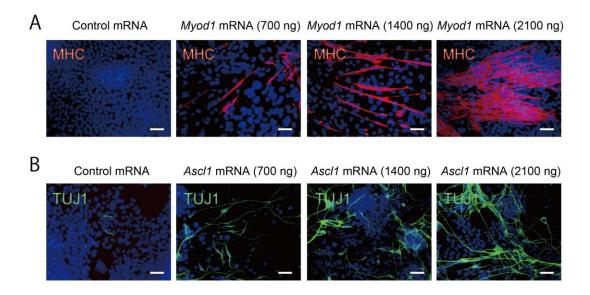
FACS analysis for PDGFRα (mesoderm marker), FOXA2 (endoderm marker) at differentiation 5 days, and PSA-NCAM (neural progenitor marker) at differentiation 6 days using ES cells carrying *Myod1* (A), *Hnf4a* (B), or *Ascl1* (C) gene (n=3 (independent experiments); *P<0.05 vs Dox+).


Supplemental Figure 3 Induction of *Hnf4a*, *Foxa1*, *Gata2*, or *Gata3* generates hepatocytes from ES cells.

(A) Immunostaining for SOX17 or α -fetoprotein (AFP), endoderm markers, and albumin, a hepatocyte marker, at differentiation 7 days using ES cells carrying Hnf4a or Foxa1 gene. Scale bar: 200 μ m. (B) Immunostaining for ALBUMIN, PAS staining, hepatocyte markers, at differentiation 7 days using ES cells carrying Gata2, Gata3, or Gbx2 gene.


Supplemental Figure 4 Induction of Ascl1 generates neurons from ES cells.

Immunostaining for β III-tubulin (TUJ1) and MAP2, pan-neuron markers, with DM at differentiation 5 and 7 days using ESCs carrying *Ascl1* gene. Upper panels, Dox+. Lower panels, Dox-. Scale bar: 200 μ m.


Supplemental Figure 5 Foxa1 associates with endoderm gene expression.

Heat map from microarray data demonstrating global gene expression pattern in differentiated cells by induction of *Foxa1*. Red and green colors represent higher and lower gene expression levels, respectively.

Supplemental Figure 6 Induction of *Ascl1*, *Hnf4a*, or *Sfpi1* increases organ-specific genes in differentiated cells.

(A) qPCR for neuron specific-genes at differentiation 7 days using ES cells carrying *Ascl1* gene (n=3 (independent experiments); **P<0.01 vs Dox+), (B) qPCR for hepatocyte specific-genes at differentiation 7 days using ES cells carrying *Hnf4a* gene (n=3; **P<0.01, *P<0.05 vs Dox+), (C) qPCR for blood cell specific-genes at differentiation 7 days using ES cells carrying *Sfpi1* gene (n=3 (independent experiments); **P<0.01, *P<0.05 vs Dox+).

Supplemental Figure 7 Transfection of *Myod1* mRNA or *Ascl1* mRNA induces myogenic cells or neurons, respectively, from ESCs in a dose-dependent manner.

(A) Immunostaining for myosin heavy chain (MHC), a skeletal muscle marker, at differentiation 11 days with Myod1 mRNA. Scale bar: 200 μ m. (B) Immunostaining for β III-tubulin (TUJ1), a pan-neuron marker, at differentiation 11 days with Ascl1 mRNA. Scale bar: 200 μ m.

ChIP DII1 F	gcgtggctgtcattaagg
ChIP DII1 R	ggtgctgtctgcattacc
ChIP DII3 F	atttcctgtccgtttgcctctc
ChIP DII3 R	gtaaatgtcgccatctgc
ChIP Stk33 F	a cagct gct ggagagagac
ChIP Stk33 R	acttgtcccaagcctctgtg
ChIP Insm1 F	ttgggtgagcctgtcttag
ChIP Insm1 R	ccggccttatcttcacttc
ChIP Ttr F	aatctccctaggcaaggttca
ChIP Ttr R	tataccccctccttccaacc
ChIP Serpina1 F	gagcaaacagagagggcta
ChIP Serpina1 R	agggatgggtgttctgactg
ChIP Apoc3 F	caggggcattacctggagta
ChIP Apoc3 R	ctcaggctctggtctggact
ChIP Apob F	tgagaccaccatcagatcca
ChIP Apob R	aggaggagctggcttaagga
ChIP Tal1 F	cggggagactctcttccttc
ChIP Tal1 R	ctcacgcaagcactctcaac
ChIP CD45 F	gggtcctctttgcaggaagt
ChIP CD45 R	agacgaaccgctaacagcat
ChIP Csf1r F	ttccctttcaggcaacctaa
ChIP Csf1r R	gctcccagctgctgctagttctg
ChIP IL7Ra F	gagagaggagacccaaacc
ChIP IL7Ra R	tctgcttacagcagcaatcc

Supplemental Table 1: Primer list for ChIP