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Figure S1.  KNL1 is required for full Aurora B 
activity at the kinetochore and at the inner 
centromere (related to Fig. 1). (A) RPE-1 cells 
demonstrating the characteristic phenotype of 
KNL1 depletion. (B) Control and KNL1-de-
pleted RPE-1 cells were immunostained with a 
Hec1 phosphospecific antibody, pSer44. (C) 
Control and KNL1-depleted RPE-1 cells were 
immunostained with an Aurora B phosphospe-
cific antibody, pT232. As shown in HeLa cells, 
localization of pT232 is also reduced in RPE-1 
cells upon KNL1 depletion. (D) Western blot 
of HeLa cell lysates probed with the Aurora B 
pT232 antibody. Input represents 5% of total 
protein used for immunoprecipitation assay. 
Input lane shows that the pT232 antibody pri-
marily recognizes a band at 40 kD (right), the 
same size at which Aurora B is recognized by 
a pan-Aurora B antibody (left). The unbound 
lane represents cell lysate after Aurora B im-
munodepletion using a pan-Aurora B antibody 
(same amount of total protein as input lane, 
left). The intensity of the pT232 band is signifi-
cantly decreased when lysates were immuno-
depleted of Aurora B (right). (E) Control and 
KNL1-depleted HeLa cells were fixed and im-
munostained with a phosphospecific antibody 
to Aurora B kinase, p-Ser331 (Petsalaki et al., 
2011). This antibody recognizes phosphory-
lated Aurora B kinase at the kinetochore in 
control cells (top); however, this localization is 
reduced in cells depleted of KNL1 (bottom). 
Quantification is shown to the right; n ≥ 100 
kinetochores from at least 9 cells. (F–H) Con-
trol and KNL1-depleted HeLa cells were immu-
nostained with a pan antibody to Aurora B 
kinase (AIM1, D), a phosphospecific antibody 
to INCENP (E, pSer893/pSer894; Wang et 
al., 2011), or a phosphospecific antibody to 
histone H3 (pSer10). Kinetochore fluores-
cence intensities are shown in F. Error bars 
represent SD from independent experiments (n 
= 3). For each experiment n ≥ 100 kineto-
chores were measured from at least 10 cells. 
Bars: (cell panels) 5 µm; (kinetochore pair in-
sets) 0.5 µm.
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Figure S2.  The N terminus of KNL1 is sufficient to facilitate Aurora B activity (related to Fig. 3). (A) Schematic of constructs used in silence/rescue transient 
expression experiments. “N” refers to amino acids from the N terminus of the protein. “C” refers to amino acids from the C terminus of the protein. Asterisks 
mark the MELT repeats present in the KNL1 constructs used in the study (London et al., 2012; Yamagishi et al., 2012). The full-length KNL1 sequence is simi-
lar to the KNL1 sequence published in Liu et al. (2010). The exact amino acids included in each construct are listed in Materials and methods. (B) Full-length 
KNL1 (KNL-WT) rescues the KNL1 depletion phenotype in HeLa cells. (C and D) HeLa cells were depleted of endogenous KNL1, rescued with the indicated 
GFP-KNL1 construct, and immunostained with antibodies to Aurora B pT232 (pABK). Kinetochore fluorescence intensities of pABK (C) and KNL1-GFP fusion 
proteins (D) in silence/rescue experiments were quantified. Error bars represent SD from independent experiments (n = 2). For each experiment n ≥ 60 ki-
netochores were measured from at least 5 cells. ***, P < 0.001 (Mann-Whitney rank sum test). (E) Quantification of KNL1-GFP fusion protein levels at ki-
netochores in doxycycline-induced stable cell lines. Data represent at least 12 kinetochores from at least 3 cells, n = 3 independent experiments. (F) 
Quantification of endogenous KNL1 fluorescence intensity in the indicated HeLa inducible cell lines. Levels of endogenous KNL1 in cells rescued with the 
300N fragment were examined with a KNL1 antibody targeted to aa 1413–1624 (Cheeseman et al., 2008). Levels of endogenous KNL1 in cells rescued 
with the 300–800N or the 1200C fragment were examined with a KNL1 antibody targeted to aa 1–22 (Materials and methods). For each experiment n 
≥ 60 kinetochores were measured from at least 5 cells. ***, P < 0.001 (Mann-Whitney rank sum test). Error bars represent SD from two independent ex-
periments. For each experiment at least 12 kinetochores were measured from at least 5 cells. Bars: (cell panels) 5 µm; (kinetochore pair insets) 0.5 µm.
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Figure S3.  KNL1 C terminus rescues wild-type levels of Hec1 and Dsn1 at kinetochores (related to Fig. 4). HeLa cells were depleted of endogenous KNL1, 
rescued with the indicated GFP-KNL1 construct, and immunostained with antibodies to Aurora B pT232 (A), pINCENP (B), and Hec1 and Dsn1 (C). Kineto-
chore fluorescence intensities of Hec1, Dsn1, and KNL1-GFP fusion proteins (C) were quantified. Error bars represent SD between cells, n ≥ 100 kineto-
chores were measured from at least 5 cells. Bars, 5 µm.
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Figure S4.  KNL1 mediates Aurora B activity in a Bub1 accumulation–independent manner (related to Fig. 6). (A) Control and BubR1-depleted cells were 
fixed and stained with pT232 phosphospecific Aurora B kinase and BubR1 antibodies. (B) HeLa cells were depleted of KNL1, rescued with the indicated 
GFP-KNL1 mutant (RVSF/AAAA), and stained with the pT232 antibody. (C) HeLa FlpIn KNL1 300N and 300–800N stable cell lines were depleted of 
KNL1 and rescued upon doxycycline addition. Cells were synchronized via a double-thymidine block and treated with 30 µM nocodazole for 3 h. Cells 
were subsequently fixed and immunostained with KNL1 and Bub1 antibodies. Bars: (cell panels) 5 µm; (kinetochore pair insets) 0.5 µm.
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Figure S5.  Aurora B recruitment is not sufficient to restore full Aurora B activity in KNL1-depleted cells (related to Fig. 7). (A–D) Control and KNL1-depleted 
HeLa cells expressing either CB-INCENP or HP1-Survivin and immunostained with antibodies to Aurora B pT232 (A and C) or pan Aurora B (AIM1, B and 
D). Bars, 5 µm.
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Video 1.  Kinetochore oscillations in control HeLa cells. Time-lapse sequence of a control HeLa cell treated with luciferase 
siRNA expressing EGFP-CENP-B and EGFP-centrin. Images were collected every 3 s for 10 min on an imaging system (DeltaVi-
sion Personal DV; Applied Precision). The movie is a projection of five optical sections played back at 20 frames per second 
(Related to Fig. 2).

Video 2.  Kinetochore oscillations in KNL1-depleted HeLa cells. Time-lapse sequence of a HeLa cell depleted of endogenous 
KNL1 expressing EGFP-CENP-B and EGFP-centrin. Images were collected every 3 s for 10 min on an imaging system (DeltaVi-
sion Personal DV; Applied Precision). The movie is a projection of five optical sections played back at 20 frames per second 
(Related to Fig. 2).
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