## The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core <sup>13</sup>C NMR

Jesse G. Kleingardner, Sarah E. J. Bowman, Kara L. Bren\*

Department of Chemistry, University of Rochester, Rochester, New York 14627-0216

## Supporting Information



Figure S1. <sup>1</sup>H NMR spectra of the Ht series of variants and Ht WT in the Fe<sup>III</sup> oxidation state.



**Figure S2.** <sup>1</sup>H NMR spectra of Pa WT and Pa F7A in both the Fe<sup>III</sup> and Fe<sup>II</sup> oxidation states.



**Figure S3.** Overlay of natural-abundance  ${}^{1}\text{H}{}^{-13}\text{C}$  HMQC spectra showing heme methyls of *Ht* series of mutants in the Fe<sup>III</sup> oxidation state.



**Figure S4.** Overlay of natural-abundance  ${}^{1}\text{H}{}^{-13}\text{C}$  HMQC spectra showing heme methyls of *Pa* WT and *Pa* F7A in the Fe<sup>III</sup> oxidation state.



**Figure S5.** Overlay of  ${}^{1}\text{H}{}^{-13}\text{C}$  HMQC spectra of 5- ${}^{13}\text{C}$ -ALA labeled *Ht*-series of mutants in the Fe<sup>III</sup> oxidation state.



**Figure S6.** Overlay of <sup>1</sup>H-<sup>13</sup>C HMQC spectra of  $5^{-13}$ C-ALA-labeled *Pa* WT and *Pa* F7A in the Fe<sup>III</sup> oxidation state.



**Figure S7.** Overlay of <sup>1</sup>H-<sup>13</sup>C HMQC spectra of 5-<sup>13</sup>C-ALA labeled Pa WT and Pa F7A in the Fe<sup>II</sup> oxidation state.



**Figure S8.** 1-D <sup>13</sup>C NMR spectra of the *Ht* series of variants in the Fe<sup>III</sup> oxidation state labeled with 5-<sup>13</sup>C-ALA. Peaks are labeled according to their assignment as a meso (m) or  $\alpha$ -pyrrole ( $\alpha$ ) carbon.



**Figure S9.** 1-D <sup>13</sup>C NMR spectra of Pa and Pa F7A in the Fe<sup>III</sup> oxidation state labeled with 5-<sup>13</sup>C-ALA.



**Figure S10.** 1-D <sup>13</sup>C NMR spectra of the  $4^{-13}$ C-ALA labeled samples of the *Ht* series in the Fe<sup>III</sup> oxidation state.



**Figure S11.** 1-D <sup>13</sup>C NMR spectra of the 4-<sup>13</sup>C-ALA labeled samples of Pa WT and Pa F7A in the Fe<sup>III</sup> oxidation state.



**Figure S12.** 1-D <sup>13</sup>C NMR spectra of *Pa* WT with both ALA labeling patterns in the Fe<sup>II</sup> oxidation state. The splittings observed in the spectrum of the 5-<sup>13</sup>C-ALA labeled sample are a result of adjacent <sup>13</sup>C isotopes with a <sup>1</sup>J<sub>CC</sub> value of ~ 67 Hz. The samples are also only partially labeled, accounting for the complexity of the observed spectrum.



**Figure S13.** EXSY NMR spectrum of *Pa* F7A showing crosspeaks of the heme methyl <sup>1</sup>H resonances between the oxidized and reduced states.



**Figure S14.** (a) Temperature dependence of the three unambiguously assigned  $\beta$ -pyrrole <sup>13</sup>C shifts of *Pa* F7A (black squares) compared to the two peaks with ambiguous assignments (blue diamonds, red triangles). (b) Temperature dependence of the seven unambiguously assigned  $\alpha$ -pyrrole <sup>13</sup>C shifts of *Pa* F7A (black circles) compared to the two peaks with ambiguous assignments (blue diamonds, red triangles). (a and b) The blue diamonds represent the peak tentatively assigned to a  $\beta$ -pyrrole carbon based on its lower shift and temperature dependence. The red triangles represent the peak tentatively assigned to an  $\alpha$ -pyrrole carbon. Individual shifts are reported in Table S11. Data for *Pa* WT is shown in Figure 3 of the main article.



**Figure S15.** Overlay of <sup>1</sup>H-<sup>15</sup>N HSQC spectra of Fe<sup>III</sup> *Pa* WT and *Pa* F7A at 25 °C. The axial His  $\delta_1$ -NH peaks are the two with the <sup>15</sup>N shift > 160 ppm.



**Figure S16.** Plot of calculated versus observed pseudocontact shifts used for the determination of the magnetic axes of *Ht* WT at 40 °C.

**Equations S1 and S2.** Inclusion of a ligand-centered pseudocontact shift term in the porphyrin spin density calculations.

Equation S1:

$$\left(\delta_{FC} + \delta_{PC}^{LC}\right)_{\beta} = \left[\left(\frac{\beta g S(S+1)}{\gamma_{I} \hbar 3 k_{B} T}\right) (S^{C} + 3Q_{CC}^{C} + Q_{CC}^{C}) + D\right] \rho_{\beta}^{\pi} + \left(\frac{\beta g S(S+1)}{\gamma_{I} \hbar 3 k_{B} T}\right) (Q_{CC}^{C} \rho_{\alpha}^{\pi})$$

Equation S2:

$$\left(\delta_{FC} + \delta_{PC}^{LC}\right)_{\alpha} = \left[\left(\frac{\beta g S(S+1)}{\gamma_{I} \hbar 3 k_{B} T}\right) \left(S^{C} + 2Q_{CC'}^{C} + Q_{CN}^{C}\right) + D\right] \rho_{\alpha}^{\pi} + \left(\frac{\beta g S(S+1)}{\gamma_{I} \hbar 3 k_{B} T}\right) \left(Q_{CC}^{C} \rho_{\beta}^{\pi} + Q_{CC}^{C} \rho_{meso}^{\pi} + Q_{NC}^{C} \rho_{N}^{\pi}\right) + Q_{NC}^{C} \rho_{N}^{\pi}\right)$$

**Table S1.** Euler rotation angles and magnetic anisotropies Pa cyt  $c_{551}$  at 25 °C and Ht cyt  $c_{552}$  at 40 °C.

|                    | α   | β     | γ    | $\Delta \chi_{ax} (/10^{-32} \text{ m}^3)$ | $\Delta \chi_{rh} (/10^{-32} \text{ m}^3)$ |
|--------------------|-----|-------|------|--------------------------------------------|--------------------------------------------|
| $Pa WT^a$          | 90° | 5°    | 258° | 2.98                                       | -1.13                                      |
| $Pa F7A^b$         | 90° | 5°    | 258° | 2.86                                       | -1.26                                      |
| $Ht WT^c$          | 81° | -3.5° | 230° | 2.81                                       | -0.494                                     |
| $Ht  K22 M^b$      | 81° | -3.5° | 230° | 2.66                                       | -0.498                                     |
| $Ht M13V^b$        | 81° | -3.5° | 230° | 2.52                                       | -0.506                                     |
| $Ht M13V/K22M^{b}$ | 81° | -3.5° | 230° | 2.44                                       | -0.514                                     |

<sup>*a*</sup>Values taken from ref. 1. <sup>*b*</sup>Values scaled from Pa or Ht WT<sup>1</sup> according to the variant's g values determined from EPR.<sup>2</sup> <sup>*c*</sup>Values determined herein.

**Table S2.** Selected chemical shifts of heme and axial Met of reduced (Fe<sup>II</sup>) Pa WT, determined herein. Shifts for the axial His of reduced Ht are provided (from ref. 3). These values were used as diamagnetic reference shifts.

|                                                  | δ <sub>dia</sub> (ppm) |
|--------------------------------------------------|------------------------|
| <sup>1</sup> H methyl                            | 3.51                   |
| <sup>13</sup> C methyl                           | 14.68                  |
| <sup>1</sup> H meso                              | 9.55                   |
| <sup>13</sup> C meso                             | 99.7                   |
| <sup>13</sup> C $\alpha$ -pyrrole                | 147.7                  |
| <sup>13</sup> C $\beta$ -pyrrole                 | 144.8                  |
| Met61 $\epsilon$ -C <sup>1</sup> H <sub>3</sub>  | -2.9                   |
| His16 $\delta_1$ - <sup>15</sup> N <sup>a</sup>  | 120.4                  |
| His 16 $\delta_1$ -N <sup>1</sup> H <sup>a</sup> | 6.73                   |
| 0 1 177                                          | . 3                    |

<sup>*a*</sup>These values are assignments of reduced Ht cyt  $c_{552}$ .<sup>3</sup>

**Table S3**. Values used for the proportionality constants between spin density and the hyperfine coupling constant,  $A^{H}$ . These are used in Equations 6–10 in the main text.

| $Q_{\scriptscriptstyle C\!H}^{\scriptscriptstyle H}$             | -63 MHz   |
|------------------------------------------------------------------|-----------|
| $\mathcal{Q}^{\scriptscriptstyle C}_{\scriptscriptstyle C'\! C}$ | -39 MHz   |
| $S^{C}$                                                          | -35.5 MHz |
| $Q^{\scriptscriptstyle C}_{\scriptscriptstyle CC'}$              | 40.3 MHz  |
| $Q_{\scriptscriptstyle C\!H}^{\scriptscriptstyle C}$             | 54.6 MHz  |
| $Q_{\scriptscriptstyle CN}^{\scriptscriptstyle C}$               | 40.3 MHz  |
| $Q_{\scriptscriptstyle NC}^{\scriptscriptstyle C}$               | -39 MHz   |

**Table S4.** <sup>1</sup>H resonance assignments for *Ht* WT determined at 40 °C at pH 7.0. Assignments were performed in both the ferric (ox) and ferrous (red) states. The pseudocontact shifts ( $\delta_{pc}$ ) were calculated by subtracting  $\delta_{red}$  from  $\delta_{ox}$ , and were used to determine the magnetic axes and anisotropy. QB designates methyl groups for which rotationally averaged coordinates were used in the magnetic axes fitting procedure.

| Residue | Atom | δ <sub>ox</sub> | $\delta_{red}$ | δ <sub>pc</sub> |
|---------|------|-----------------|----------------|-----------------|
| A7      | HN   | 7.48            | 7.85           | -0.36           |
| K8      | HN   | 7.95            | 8.08           | -0.13           |
| Q9      | HN   | 8.35            | 8.44           | -0.10           |
| K10     | HN   | 7.89            | 8.41           | -0.52           |
| C12     | HN   | 8.10            | 8.85           | -0.76           |
| C12     | HA   | 3.34            | 5.04           | -1.70           |
| M13     | HN   | 8.36            | 7.89           | 0.47            |
| M13     | HN   | 6.25            | 4.65           | 1.60            |
| D17     | HN   | 10.20           | 7.56           | 2.64            |
| D17     | HA   | 5.87            | 4.39           | 1.48            |
| L18     | HN   | 9.13            | 8.24           | 0.89            |
| V23     | HN   | 7.70            | 7.08           | 0.61            |
| V23     | HA   | 3.65            | 3.99           | -0.35           |
| A26     | HN   | 9.47            | 8.30           | 1.18            |
| A26     | HA   | 5.81            | 3.82           | 1.99            |
| A26     | QB   | 1.51            | 0.65           | 0.86            |
| Y27     | HN   | 9.45            | 7.77           | 1.68            |
| Y27     | HA   | 4.41            | 4.01           | 0.40            |
| D29     | HN   | 7.07            | 6.76           | 0.31            |
| V30     | HN   | 7.76            | 7.59           | 0.17            |
| V30     | HA   | 3.79            | 4.06           | -0.27           |
| V30     | HB   | 2.17            | 2.37           | -0.20           |
| K32     | HN   | 7.36            | 7.33           | 0.03            |
| K32     | HA   | 4.07            | 4.13           | -0.06           |
| L44     | HN   | 8.54            | 8.77           | -0.23           |
| L44     | HA   | 3.29            | 3.57           | -0.28           |

| Residue | Atom | δοχ   | δred  | δ <sub>nc</sub> |
|---------|------|-------|-------|-----------------|
| A45     | HN   | 8.57  | 8.71  | -0.14           |
| A45     | HN   | 3.50  | 3.85  | -0.35           |
| A45     | QB   | 1.23  | 1.37  | -0.15           |
| I48     | HN   | 8.51  | 7.90  | 0.62            |
| K50     | HN   | 9.32  | 7.84  | 1.48            |
| K50     | HA   | 5.09  | 3.91  | 1.19            |
| G51     | HN   | 10.31 | 7.12  | 3.19            |
| G52     | HN   | 10.12 | 7.50  | 2.62            |
| V55     | HN   | 9.83  | 10.28 | -0.45           |
| V55     | HA   | 3.73  | 3.94  | -0.21           |
| V55     | HB   | 2.06  | 2.59  | -0.53           |
| W56     | HN   | 9.58  | 10.45 | -0.87           |
| W56     | HA   | 4.28  | 4.70  | -0.42           |
| W56     | HD1  | 6.40  | 7.76  | -1.37           |
| W56     | HE1  | 10.94 | 12.12 | -1.18           |
| V59     | HN   | 7.00  | 7.72  | -0.72           |
| V59     | HA   | 3.93  | 4.56  | -0.64           |
| V59     | HB   | 1.03  | 2.28  | -1.25           |
| L74     | HN   | 8.29  | 8.88  | -0.59           |
| L74     | HA   | 3.63  | 4.33  | -0.70           |
| I78     | HN   | 8.00  | 8.71  | -0.71           |
| I78     | HA   | 2.24  | 2.48  | -0.24           |
| I81     | HN   | 7.08  | 7.18  | -0.10           |
| I81     | HA   | 3.68  | 3.65  | 0.03            |
| I81     | HB   | 1.67  | 1.63  | 0.04            |
|         |      |       |       |                 |

|                           | Ht WT           |                                                          |                                                                                             | Ht K22M         |                                                            |                                             |
|---------------------------|-----------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|---------------------------------------------|
|                           | $\delta_{para}$ | $\delta^{\scriptscriptstyle MC}_{\scriptscriptstyle PC}$ | $\delta_{\scriptscriptstyle FC}$ + $\delta_{\scriptscriptstyle PC}^{\scriptscriptstyle LC}$ | $\delta_{para}$ | ${\delta}^{\scriptscriptstyle MC}_{\scriptscriptstyle PC}$ | $\delta_{_{FC}}$ + $\delta_{_{PC}}^{_{LC}}$ |
| <sup>1</sup> H methyl     | 18.15           | -2.61                                                    | 20.76                                                                                       | 18.02           | -2.48                                                      | 20.50                                       |
| <sup>13</sup> C methyl    | -51.4           | -4.3                                                     | -47.1                                                                                       | -51.4           | -4.1                                                       | -47.3                                       |
| <sup>1</sup> H meso       | -5.92           | -7.71                                                    | 1.79                                                                                        | -5.97           | -7.29                                                      | 1.32                                        |
| <sup>13</sup> C meso      | -64.0           | -17.9                                                    | -46.0                                                                                       | -64.2           | -17.0                                                      | -47.2                                       |
| $^{13}C \alpha$ -pyrrole  | -93.9           | -23.6                                                    | -70.2                                                                                       | -93.6           | -22.3                                                      | -71.2                                       |
| <sup>13</sup> C β-pyrrole | 14.1            | -9.2                                                     | 23.3                                                                                        | 12.6            | -8.7                                                       | 21.3                                        |

**Table S5.** Contributions to the paramagnetic chemical shifts (ppm) of the heme and axial ligands of *Ht* WT and *Ht* K22M at 40 °C.

**Table S6.** Contributions to the paramagnetic chemical shifts (ppm) of the heme and axial ligands of *Ht* M13V and *Ht* M13V/K22M at 40 °C.

|                                   | <i>Ht</i> M13V  |                                                            |                                                                                             | Ht              | • M13V/H                                                   | K22M                                        |
|-----------------------------------|-----------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|---------------------------------------------|
|                                   | $\delta_{para}$ | ${\delta}^{\scriptscriptstyle MC}_{\scriptscriptstyle PC}$ | $\delta_{\scriptscriptstyle FC}$ + $\delta_{\scriptscriptstyle PC}^{\scriptscriptstyle LC}$ | $\delta_{para}$ | ${\delta}^{\scriptscriptstyle MC}_{\scriptscriptstyle PC}$ | $\delta_{_{FC}}$ + $\delta_{_{PC}}^{_{LC}}$ |
| <sup>1</sup> H methyl             | 17.39           | -2.36                                                      | 19.76                                                                                       | 17.07           | -2.30                                                      | 19.37                                       |
| <sup>13</sup> C methyl            | -51.1           | -3.9                                                       | -47.2                                                                                       | -51.2           | -3.8                                                       | -47.4                                       |
| <sup>1</sup> H meso               | -6.28           | -6.90                                                      | 0.62                                                                                        | -6.37           | -6.67                                                      | 0.30                                        |
| <sup>13</sup> C meso              | -62.8           | -16.1                                                      | -46.7                                                                                       | -62.8           | -15.5                                                      | -47.3                                       |
| <sup>13</sup> C $\alpha$ -pyrrole | -102.9          | -21.1                                                      | -81.8                                                                                       | -105.8          | -20.4                                                      | -85.4                                       |
| <sup>13</sup> C β-pyrrole         | 6.2             | -8.2                                                       | 14.4                                                                                        | 1.9             | -7.9                                                       | 9.8                                         |

**Table S7.** Contributions to the sum of the average contact and ligand-centered pseudocontact shifts (in ppm) for selected heme nuclei. The contributions from the spin density on each of the nuclei are shown independently. The data shown are for Ht WT at 40 °C.

|                                   | $ ho^{\pi}_{\scriptscriptstyle meso}$ | $ ho^{\pi}_{eta-pyrrole}$ | $ ho^{\pi}_{lpha-pyrrole}$ | $ ho^{\pi}_{\scriptscriptstyle N-pyrrole}$ |
|-----------------------------------|---------------------------------------|---------------------------|----------------------------|--------------------------------------------|
| <sup>1</sup> H meso               | 1.8                                   | -                         | -                          | -                                          |
| <sup>13</sup> C methyl            | -                                     | -47.1                     | -                          | -                                          |
| <sup>13</sup> C meso              | -9.9                                  | -                         | -36.2                      | -                                          |
| <sup>13</sup> C $\beta$ -pyrrole  | -                                     | 41.4                      | -18.1                      | -                                          |
| <sup>13</sup> C $\alpha$ -pyrrole | 4.4                                   | -47.1                     | 34.0                       | -61.4                                      |

| shifts (in ppm) for selected heme nuclei. The contributions from the spin density on each of | the |
|----------------------------------------------------------------------------------------------|-----|
| nuclei are shown independently. The data shown are for Ht K22M-WT at 40 °C.                  |     |
|                                                                                              |     |

**Table S8.** Contributions to the change in the average contact and ligand-centered pseudocontact

| _                           | $ ho^{\pi}_{\scriptscriptstyle meso}$ | $ ho_{eta-pyrrole}^{\pi}$ | $ ho_{lpha-pyrrole}^{\pi}$ | $ ho^{\pi}_{{\scriptscriptstyle N}-pyrrole}$ |
|-----------------------------|---------------------------------------|---------------------------|----------------------------|----------------------------------------------|
| <sup>1</sup> H meso         | -0.55                                 | -                         | -                          | -                                            |
| <sup>13</sup> C methyl      | -                                     | -0.16                     | -                          | -                                            |
| <sup>13</sup> C meso        | 3.04                                  | -                         | -4.24                      | -                                            |
| <sup>13</sup> C β-pyrrole   | -                                     | 0.14                      | -2.12                      | -                                            |
| $^{13}$ C $\alpha$ -pyrrole | -1.35                                 | -0.16                     | 3.98                       | -3.48                                        |

**Table S9.** Contributions to the change in the average contact and ligand-centered pseudocontact shifts (in ppm) for selected heme nuclei. The contributions from the spin density on each of the nuclei are shown independently. The data shown are for *Ht* M13V–WT at 40 °C.

|                                   | $ ho^{\pi}_{	extsf{meso}}$ | $ ho^{\pi}_{eta-pyrrole}$ | $ ho^{\pi}_{lpha-pyrrole}$ | $ ho^{\pi}_{\scriptscriptstyle N-pyrrole}$ |
|-----------------------------------|----------------------------|---------------------------|----------------------------|--------------------------------------------|
| <sup>1</sup> H meso               | -2.73                      | -                         | -                          | -                                          |
| <sup>13</sup> C methyl            | -                          | 0.40                      | -                          | -                                          |
| <sup>13</sup> C meso              | 15.1                       | -                         | -16.1                      | -                                          |
| <sup>13</sup> C β-pyrrole         | -                          | -0.35                     | -8.03                      | -                                          |
| <sup>13</sup> C $\alpha$ -pyrrole | -6.73                      | 0.40                      | 15.1                       | -20.3                                      |

**Table S10.** Contributions to the change in the average contact and ligand-centered pseudocontact shifts (in ppm) for selected heme nuclei. The contributions from the spin density on each of the nuclei are shown independently. The data shown are for *Ht* M13V/K22M–WT at 40 °C.

|                                   | $ ho^{\pi}_{\scriptscriptstyle meso}$ | $ ho^{\pi}_{eta-pyrrole}$ | $ ho^{\pi}_{lpha-pyrrole}$ | $ ho^{\pi}_{\scriptscriptstyle N-pyrrole}$ |
|-----------------------------------|---------------------------------------|---------------------------|----------------------------|--------------------------------------------|
| <sup>1</sup> H meso               | -4.07                                 | -                         | -                          | -                                          |
| <sup>13</sup> C methyl            | -                                     | 0.53                      | -                          | -                                          |
| <sup>13</sup> C meso              | 22.5                                  | -                         | -24.3                      | -                                          |
| <sup>13</sup> C β-pyrrole         | -                                     | -0.46                     | -12.1                      | -                                          |
| <sup>13</sup> C $\alpha$ -pyrrole | -10.0                                 | 0.53                      | 22.8                       | -28.5                                      |

| <sup>13</sup> C labeling pattern | Nucleus           | 283 K | 290.5 K | 298 K | 305.5 K | 313 K |
|----------------------------------|-------------------|-------|---------|-------|---------|-------|
| 5- <sup>13</sup> C-ALA           | meso              | 19.5  | 22.9    | 26.1  | 29.4    | 32.0  |
|                                  | meso              | 22.7  | 25.2    | 27.3  | 29.4    | 32.0  |
|                                  | meso              | 30.6  | 32.6    | 34.5  | 36.6    | 38.5  |
|                                  | meso              | 56.3  | 56.8    | 59.0  | 60.3    | 61.5  |
| 5- <sup>13</sup> C-ALA           | $\alpha$ -pyrrole | -5.7  | -0.7    | 4.0   | 9.2     | 14.3  |
|                                  | $\alpha$ -pyrrole | 37.9  | 40.6    | 43.5  | 46.8    | 50.3  |
|                                  | $\alpha$ -pyrrole | 54.7  | 57.7    | 59.0  | 61.6    | 64.3  |
|                                  | $\alpha$ -pyrrole | 62.8  | 65.0    | 67.4  | 69.9    | 72.8  |
| 4- <sup>13</sup> C-ALA           | $\alpha$ -pyrrole | -27.8 | -21.8   | -16.0 | -9.9    | -3.6  |
|                                  | $\alpha$ -pyrrole | -4.2  | 0.5     | 5.0   | 9.8     | 14.7  |
|                                  | $\alpha$ -pyrrole | -0.1  | 4.2     | 8.4   | 12.9    | 17.7  |
|                                  | $\alpha$ -pyrrole | 61.7  | 62.7    | 63.9  | 65.5    | 67.4  |
| 4- <sup>13</sup> C-ALA           | β-pyrrole         | 84.1  | 87.5    | 90.9  | 94.5    | 98.3  |
|                                  | β-pyrrole         | 117.3 | 119.3   | 121.5 | 123.8   | 126.5 |
|                                  | β-pyrrole         | 155.8 | 156.1   | 156.4 | 156.9   | 157.6 |
|                                  | β-pyrrole         | 201.1 | 199.3   | 197.9 | 196.8   | 196.0 |

**Table S11.** Temperature dependent shifts of meso,  $\alpha$ -pyrrole, and  $\beta$ -pyrrole core heme <sup>13</sup>C shifts in ppm collected for Fe<sup>III</sup> *Pa* WT at 25 °C.

**Table S12.** Temperature dependent shifts of meso,  $\alpha$ -pyrrole, and  $\beta$ -pyrrole core heme <sup>13</sup>C shifts in ppm collected for Fe<sup>III</sup> *Pa* F7A at 25 °C.

| <sup>13</sup> C labeling pattern | Nucleus           | 283 K | 290.5 K | 298 K | 305.5 K | 313 K |
|----------------------------------|-------------------|-------|---------|-------|---------|-------|
| 5- <sup>13</sup> C-ALA           | meso              | 19.2  | 22.3    | 25.4  | 28.8    | 31.8  |
|                                  | meso              | 23.9  | 26.4    | 28.8  | 31.3    | 33.8  |
|                                  | meso              | 37.5  | 39.9    | 41.9  | 43.9    | 45.8  |
|                                  | meso              | 52.8  | 54.2    | 58.3  | 56.9    | 58.1  |
| 5- <sup>13</sup> C-ALA           | $\alpha$ -pyrrole | -13.3 | -8.8    | -4.4  | 0.5     | 5.3   |
|                                  | $\alpha$ -pyrrole | 40.9  | 43.8    | 46.7  | 49.9    | 53.2  |
|                                  | $\alpha$ -pyrrole | 54.2  | 56.3    | 55.6  | 60.7    | 63.2  |
|                                  | $\alpha$ -pyrrole | 61.6  | 63.8    | 66.0  | 68.4    | 71.0  |
| 4- <sup>13</sup> C-ALA           | α-pyrrole         | -23.1 | -17.1   | -11.4 | -5.3    | 0.7   |
|                                  | $\alpha$ -pyrrole | -11.9 | -7.5    | -3.2  | 1.6     | 6.4   |
|                                  | $\alpha$ -pyrrole | 5.7   | 10.0    | 14.1  | 18.5    | 22.8  |
|                                  | α-pyrrole         | 68.9  | 69.8    | 70.7  | 72.0    | 73.3  |
| 4- <sup>13</sup> C-ALA           | β-pyrrole         | 83.7  | 86.9    | 90.2  | 93.6    | 97.3  |
|                                  | β-pyrrole         | 121.5 | 123.1   | 124.8 | 126.7   | 128.8 |
|                                  | β-pyrrole         | 146.4 | 146.2   | 146.1 | 146.4   | 146.9 |
|                                  | β-pyrrole         | 203.7 | 202.2   | 201.0 | 200.0   | 199.2 |

| Nucleus                                        | Pa WT | Pa F7A | <i>Ht</i> WT | Ht K22M | Ht M13V | <i>Ht</i> M13V |
|------------------------------------------------|-------|--------|--------------|---------|---------|----------------|
|                                                |       |        |              |         |         | /K22M          |
| <sup>13</sup> C meso <sup>a</sup>              | 26.3  | 25.8   | 23.8         | 23.2    | 23.3    | 22.8           |
| <sup>13</sup> C meso <sup>a</sup>              | 27.7  | 29.1   | 34.1         | 32.9    | 35.5    | 34.5           |
| <sup>13</sup> C meso <sup>a</sup>              | 34.8  | 42.2   | 34.7         | 35.2    | 38.9    | 39.3           |
| <sup>13</sup> C meso <sup>a</sup>              | 59.2  | 55.7   | 50.3         | 50.7    | 49.9    | 50.9           |
| <sup>1</sup> H meso <sup>a</sup>               | 8.73  | 8.99   | 0.14         | -0.14   | -0.12   | -0.45          |
| <sup>1</sup> H meso <sup>a</sup>               | 6.20  | 6.54   | 0.83         | 0.57    | -0.03   | -0.32          |
| <sup>1</sup> H meso <sup>a</sup>               | -1.36 | -2.23  | 6.44         | 6.58    | 5.88    | 6.00           |
| <sup>1</sup> H meso <sup>a</sup>               | -3.03 | -2.97  | 7.10         | 7.31    | 7.33    | 7.48           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>a</sup> | 4.0   | -4.4   | 38.9         | 38.2    | 27.3    | 24.1           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>a</sup> | 43.5  | 46.7   | 74.9         | 76.6    | 64.4    | 63.3           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>a</sup> | 59.0  | 55.6   | 74.9         | 76.6    | 66.0    | 65.6           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>a</sup> | 67.4  | 66.0   | 80.6         | 81.6    | 73.9    | 72.4           |
| $^{13}C \alpha$ -pyrrole <sup>b</sup>          | -16.0 | -11.4  | 25.5         | 24.5    | 16.4    | 11.3           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>b</sup> | 5.0   | -3.2   | 34.9         | 33.2    | 26.0    | 20.3           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>b</sup> | 8.4   | 14.1   | 42.1         | 40.1    | 32.2    | 26.6           |
| <sup>13</sup> C $\alpha$ -pyrrole <sup>b</sup> | 63.9  | 70.7   | 59.1         | 62.3    | 52.3    | 51.7           |
| $^{13}C \beta$ -pyrrole <sup>b</sup>           | 90.9  | 90.2   | 134.9        | 131.3   | 126.9   | 120.1          |
| <sup>13</sup> C $\beta$ -pyrrole <sup>b</sup>  | 121.5 | 124.8  | 137.2        | 134.8   | 131.0   | 127.0          |
| <sup>13</sup> C $\beta$ -pyrrole <sup>b</sup>  | 156.4 | 146.1  | 143.7        | 141.6   | 132.2   | 127.0          |
| <sup>13</sup> C $\beta$ -pyrrole <sup>b</sup>  | 197.9 | 201.0  | 219.9        | 222.0   | 213.8   | 212.7          |
| <sup>13</sup> C methyl                         | -21.5 | -17.0  | -42.7        | -42.4   | -43.0   | -42.9          |
| <sup>13</sup> C methyl                         | -38.2 | -36.3  | -38.8        | -39.4   | -39.6   | -40.5          |
| <sup>13</sup> C methyl                         | -47.5 | -49.3  | -33.3        | -32.2   | -31.2   | -30.1          |
| <sup>13</sup> C methyl                         | -56.7 | -56.7  | -32.1        | -32.9   | -31.9   | -32.6          |
| <sup>1</sup> H methyl                          | 13.21 | 10.89  | 23.95        | 23.66   | 23.33   | 22.83          |
| <sup>1</sup> H methyl                          | 17.95 | 16.98  | 22.41        | 22.73   | 22.15   | 22.36          |
| <sup>1</sup> H methyl                          | 24.88 | 25.47  | 22.46        | 21.63   | 20.76   | 19.67          |
| <sup>1</sup> H methyl                          | 32.21 | 32.16  | 17.83        | 18.11   | 17.38   | 17.48          |

**Table S13.** List of heme <sup>1</sup>H and <sup>13</sup>C shifts in ppm used in this study. Data for the Fe<sup>III</sup> forms of *Pa* cyt  $c_{551}$  and *Ht* cyt  $c_{552}$  variants were collected at 25 °C and 40 °C, respectively. Specific assignments were not made.

<sup>*a*</sup>Chemical shifts obtained from samples isotopically labeled with 5-<sup>13</sup>C-ALA. <sup>*b*</sup>Chemical shifts obtained from samples isotopically labeled with 4-<sup>13</sup>C-ALA.

| <sup>13</sup> C   | <sup>1</sup> II maga <sup>a</sup> | $^{13}C \alpha$ -    | <sup>13</sup> C α-   | <sup>13</sup> C β-   | <sup>13</sup> C | $^{1}\mathrm{H}$ |
|-------------------|-----------------------------------|----------------------|----------------------|----------------------|-----------------|------------------|
| meso <sup>a</sup> | n meso                            | pyrrole <sup>a</sup> | pyrrole <sup>b</sup> | pyrrole <sup>b</sup> | methyl          | methyl           |
| 98.3              | 9.33                              | 146.3                | 146.3                | 144.0                | 15.2            | 3.35             |
| 99.7              | 9.45                              | 147.5                | 146.6                | 144.4                | 13.1            | 3.46             |
| 99.9              | 9.48                              | 147.5                | 149.2                | 145.3                | 15.4            | 3.51             |
| 100.8             | 9.93                              | 149.1                | 149.3                | 145.5                | 15.0            | 3.73             |

**Table S14.** Individual Fe<sup>II</sup> *Pa* WT shifts used as the  $\delta_{dia}$  reference shifts.

<sup>*a*</sup>Chemical shifts obtained from samples isotopically labeled with 5-<sup>13</sup>C-ALA. <sup>*b*</sup>Chemical shifts obtained from samples isotopically labeled with 4-<sup>13</sup>C-ALA.

## References

(1) Zhong, L. H.; Wen, X.; Rabinowitz, T. M.; Russell, B. S.; Karan, E. F.; Bren, K. L.: Heme Axial Methionine Fluxionality in *Hydrogenobacter thermophilus* cytochrome *c*-552. *Proc. Natl. Acad. Sci. USA* **2004**, *101*, 8637-8642.

(2) Can, M.; Zoppellaro, G.; Andersson, K. K.; Bren, K. L.: Modulation of Ligand-Field Parameters by Heme Ruffling in Cytochromes *c* Revealed by EPR Spectroscopy. *Inorg. Chem.* **2011**, *50*, 12018-12024.

(3) Takayama, S. J.; Takahashi, Y.; Mikami, S.; Irie, K.; Kawano, S.; Yamamoto, Y.; Hemmi, H.; Kitahara, R.; Yokoyama, S.; Akasaka, K.: Local conformational transition of *Hydrogenobacter thermophilus* cytochrome *c*(552) relevant to its redox potential. *Biochemistry* **2007**, *46*, 9215-9224.