Supporting Information for:

Structural and functional characterization of Cals S11, a TDP-rhamnose 3'-Omethyltransferase involved in calicheamicin biosynthesis.

Shanteri Singh¹, Aram Chang², Kate E. Helmich², Craig A. Bingman², Russel L. Wrobel², Emily T. Beebe², Shin-Ichi Makino², David J. Aceti², Kevin Dyer³, Greg L. Hura³, Manjula Sunkara⁴, Andrew J. Morris⁴, George N. Phillips Jr.^{2,5*}, and Jon S. Thorson^{1*}

 ¹Center for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, KY 40536-0596; ²Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ³Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA; ⁴Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536;
⁵Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA; ^{*}Correspondence to Jon S Thorson, (e-mail: jsthorson@uky.edu) or George N. Phillips, Jr. (e-mail: georgep@rice.edu)

Table of Contents

Figure S1	S2
Figure S2	S3
Table S1	S4
Figure S3	S5
Figure S4	S6

CalS11	VNNLPLFLRR	HOMTDLLSMD	ALYRQVLD	VPGVIME	FGVRFGRHLG	TFAALRGVYE	PYNPLRRIVG	FDTFTGFPD-
AveBVII	IDNLSVYMRR	NQLADLLSMD	ALYRMLPE	VPGVIME	FGVLHGRHLA	TLTALRSIYE	PYNSLRRVIG	FDTFTGFPD-
hexose30MT	IDNLPVYLRR	HQLADLLSMD	ALYRMLPE	IPGVIME	FGVLHGRHLA	TLTALRTSYE	PYNSLRRIIG	FDTFTGFPDD
SnogL	EQGSVWPRDA	HTMVGMRRLR	NVRECAERVL	ADGVPGDFME	TGVWRGGTCI	FMRAVLAAYE	VSDRVVWV	ADSFAGIPA-
mycF	ESGEDYPTVA	HTMIGMKRLN	NLQHCVESAL	RDGVPGDVLE	TGVWRGGACI	FARGILKAYD	VRDRTVWV	ADSFQGFPK-
TylF	ESGEDYPTVA	HTMIGLKRLD	NLHRCLADVV	EDGVPGDFIE	TGVWRGGACI	FARGLLNAYG	QADRTVWV	ADSFQGFPE-
NovP	NEGRDWPANA	HTMIGIKRLE	NIRQCVEDVI	GNNVPGDLVE	TGVWRGGACI	LMRGILRAHD	VRDRTVWV	ADSFQGIPD-
Rmlt4	RLGVDWPSVA	HTMIGIRRLE	NVEHCVKTAL	ADGVPGDFIE	TGVWRGGTCI	FMRAVLKAHG	VTDRRVWV	ADSFEGMPA-
MtfB	DLGLDWPADA	LTMIGMQRLT	SLQHCVETIL	KDDI PGDLVE	CGVWRGGASI	LMRAVLSAYG	DEKRCVWL	CDSFEGVPP-
MtfC	DLGLDWPADA	LTMIGMKRLT	SLQHCVETVL	EEDVPGDLVE	CGVWRGGASI	LMRAVLAAYG	DEKRCVWL	CDSFAGVPP-
Consensus	g.d.pa	ht\$igr\$.	nlcv	.d.!PGdE	tGVwrGg.ci	ra.l.ay.	d <u>R</u> .!wv	aDsF.GfP
CalS11	VNDVDRVGPT	AYQGRFAVPG	GYPAYLKEVL	DAHECSDFFG	HVTQRSVLVE	GDVRETVPRY	LAENPQTVIA	LAYFDLDLYE
AveBVII	IDEADEVSTS	AVPGRFAVPD	GEVEHLRQVL	AAHEANEPYG	H-TQRSFVVQ	GDVRETVPQY	LAEHPHTVIA	LAYFDLDLYR
hexose30MT	IDDVDKVSTS	AHPGRFAVPE	DEVGHLREVL	AAHEAGEPFG	H-TQRSFVVQ	GDVRETVPQY	LADNPETVIA	MAYFDLDLYQ
SnogL	-PDLDRYPQD	EEARGIESVN	EVVGVPLE	TVRGNFDRYG	LLDDQVRFLP	GRFCDTLP	EAPVERLA	LLRIDGDLYE
mycF	-ITDDDHPMD	AEMN-LHQYN	EAVDLPTSLA	TVQRNFSRYG	LLDDQVRFLP	GWFKDTMP	TAPFERLA	VLRMDGDSYG
TylF	-LTGSDHPLD	VEID-LHQYN	EAVDLPTSEE	TVRENFARYG	LLDDNVRFLA	GWFKDTMP	AAPVKQLA	VMRLDGDSYG
NovP	-VGEDGYAGD	RKMA-LHRRN	SVLAVSEE	EVRRNFRNYD	LLDEQVRFLP	GWFKDTLP	TAPIDTLA	VLRMDGDLYE
Rmlt4	-ADASTHAGD	RELA-SDRYN	DFMATDLP	TVRRNFERYD	LLDDQVQFLP	GWFRDTLP	TAPVDRLA	VLRIDSDLYE
MtfB	-PDTAHYQAD	KGIK-LHRAA	GILAVPEA	QVRANFERYG	LLDDRVRFVP	GWFKDTLQ	DAPIERIA	VLRIDGDLYE
MtfC	-PDTVNYKAD	KGIR-LHRHA	RILGVPLE	NVKANFERYG	LLDDQVRFVP	GWFKDTLK	DAPIDRIS	VLRIDGDLYE
Consensus	d.dd	n		.vr.nf.r%g	lld#qvrflp	Gwf.#T.p	aP1A	vlr.DgDlYe
			_					
CalS11	PTKAVLEAIR	PYLTKGSIVA	FDELDNPKWP	GENIAMRKVL	GLDHAPLRLL	PGRPAPA-YL		
AveBVII	PTRELLDVIT	PHLTRGSILA	FDELTHPKWP	GETRALSEAF	GLDHAPLRQL	PGREPPVIYM		
hexose30MT	PTRELLEAIR	PHLTKGSILA	FDELAHPKWP	GETTALREVF	GLDHAPLRQL	PGREPPVIYL		
SnogL	STMDALVSMY	PKLSPGGYLI	VDDYHALDVC	KKAVHDYRDQ	HGIDDPITDI	DWSGAYWRKS		
mycF	ATMDVLTHAY	PRLSPGGFAI	IDDYCI-PAC	REAVHEYRDR	HGISDEIVEI	DRQGVYWRRS		
TylF	ATMDVLDSLY	ERLSPGGYVI	VDDYCI-PAC	REAVHDFRDR	LGIRDTIHRI	DRQGAYWRHS		
NovP	STWDTLTNLY	PKVSVGGYVI	VDDYMMCPPC	KDAVDEYRAK	FDIADELITI	DRDGVYWQRT		
Rmlt4	STMDTLVHLY	PKLSPGGFVI	VDDYHI-PVC	AEAVHDWRAK	FGVTDPIQDI	DGLGVFWRRE		
MtfB	STIQALDALY	PRLSAGGICI	IDDYHAIDAC	RQAVTDYRSE	HGVTAPIEEI	DGTGVLWRKS		
MtfC	STIQALDALY	PRLSPGGFCI	VDDYHAIKAC	AQAVTDYRTQ	HGVTAEIVEI	DGTGVLWRKP		
Consensus	.T.d.Ly	P.lspGgi	vD #yc	.eavr	.gdpii	dg.gwr		

Figure S1. Multiple sequence alignment of CalS11 using DELTA-BLAST. AveBVII is a TDP-6-deoxy-L-hexose 3-O-MT from *Streptomyces avermitilis* (avermectin); hexose 3OMT is a NDPhexose 3-O-methyltransferase from *Streptomyces rochei*; SnogL is a nogalose O-MT from *Streptomyces nogalater* (nogalamycin); MycF is a mycinose 3-O-MT from *Micromonospora griseorubida* (mycinamycin II); TylF is a a mycinose 3-O-MT from *Streptomyces fradiae* (tylosin); NovP is a noviose 3-O-MT from *Streptomyces spheroids* (novobiocin); RmIT4, MtfB and MtfC are O-MTs from *Mycobacteria*. Residues in blue boxes are conserved motifs of MTs, which include a glycine-rich motif and a signature motif containing a conserved aspartate, both of which are key to cofactor binding; green boxes indicate conserved acidic residues involved in metal binding; the yellow box highlights the region within CalS11 and NovP which correlates to the flexible lid.

Figure S2. Metal dependency of CalS11. Region of ¹³C-¹H HSQC spectrum where colors blue, red and green represent TDP-L-[*U*-¹³C]rhamnose and the corresponding ¹³C-methylated product, respectively within a standard reaction (middle panel), a standard reaction containing 10 mM EDTA (top panel) and a standard reaction containing 5 mM MgCl₂ (bottom panel).

PDB	Enzyme	Organism	P-Score	Rmsd	L1 ^a	L2 ^a	%ID
2WK1	NOVP Noviose-4'- <i>O</i> -MT	Streptomyces caeruleus	8.97E-11	2.54	206	242	19
3SSO	MycE Mycinamycin-2'- <i>O</i> -MT	Micromonospora griseorubida	3.9E-5	3.01	206	221	9
3BXO	DesVI TDP-Desosamine-3'- <i>N,N</i> -diMT	Streptomyces venezuelae	6.13E-5	3.03	206	152	7
3GXO	MmcR Mitomycin-7- <i>0</i> -MT	Streptomyces lavendulae	1.18E-4	3.08	206	183	6
3BUS	RebM Rebeccamycin-4'- <i>O</i> -MT	Lechevalieria aerocolonigenes	2.85E-4	3.04	206	251	8
4E2Z	TcaB9 TDP-tetronitrose-3'-C-MT	Micromonospora chalcea	4.22E-4	3.12	206	290	9
1QZZ	RdmB Aclacinomycin-10-hydroxylase	Streptomyces purpurascens	0.0011	3.24	206	250	6
3LST	CalO1 Orsellinic acid-O-MT	Micromonospora echinospora	0.00157	3.29	206	180	10
3PFG	TylM1 TDP-Mycaminose-3'- <i>N.N</i> -diMT	Streptomyces fradiae	0.00158	3.18	206	241	8

Table S1. Proteins structurally-related to CalS11.

^aL1 and L2 indicate the number of amino acid residues of CalS11 and enzyme under question used for structural alignment.

adenosyltransferase (A) Figure S3. **Methionine** (MAT) reaction. Methionine adenosyltransferase reaction. (B) HPLC chromatogram [Gemini-NX C-18 5 µm, 250 x 4.6 mm column (Phenomenex, Torrance, California, USA) with a gradient of 5% to 50% CH₃CN (solvent B) over 20 min (A = 20 mM sodium phosphate buffer pH 3.5 and 1 g/L 1-octanesulfonic acid (Sigma-Aldrich, St. Louis, MO); flow rate = 1 mL min⁻¹; A₂₅₄ nm] of standards (ATP and SAM) and a corresponding MAT reaction (1.1 mM L-methionine, 1.2 equivalent of ATP and 50 µg Sulfolobus solfataricus methionine adenosyltransferase in 20 mM NaH₂PO₄ buffer, 10 mM MgCl₂, 100 mM KCl, pH 8.0 at 37 °C for 1 hr). (C) HRMS mass of MAT reaction product; m/z 399.1437, calcd 399.1446.

Figure S4. NMR of Methionine adenosyltransferase (MAT) reaction. (A) Overlay of region of ¹³C-¹H HSQC spectrum consisting of S-CH₃ groups of [S-¹³C-methyl]-L-methionine and the corresponding ¹³C-methyl]-L-methionine spectrum and that in blue is that from a partial MAT reaction containing S-CH₃ groups of substrate and product. The NMR chemical shifts of S-CH₃ groups of [S-¹³C-methyl]-L-methionine and ¹³CH₃-SAM are ¹H-2.12 ppm/¹³C-15.9 ppm and ¹H-2.96 ppm/¹³C-25.4 ppm, respectively. For comparison, the full ¹³C-¹H HSQC spectrum of [S-¹³C-methyl]-L-methionine (**B**) and the corresponding ¹³C-methylated product (¹³C-SAM) (**C**) are also provided. The circled signals arise from residual glycerol within the buffer.