Supplementary Information

The TSC-mTOR pathway regulates macrophage polarization

Vanessa Byles^{1,3}, Anthony J. Covarrubias^{1,3}, Issam Ben-Sahra¹, Dudley W. Lamming², David M. Sabatini², Brendan D. Manning¹, and Tiffany Horng¹

¹Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts

²Whitehead Institute for Biomedical Research, Cambridge, MA 02142; Department of Biology, MIT, Cambridge, MA 02139; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139; Broad Institute of Harvard and MIT, Seven Cambridge Center, Cambridge, MA 02142; The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139

³These authors contributed equally to this work

Corresponding author: Tiffany Horng Harvard School of Public Health 655 Huntington Ave, II-115 Boston, MA 02115 Ph: (617) 432-7526 F: (617) 432-5236 thorng@hspharvard.edu

Supplementary Figures S1-S9 Supplementary Table S1

Supplementary Figure S1. Increased Cell Size and Granularity in $Tsc1^{\Delta/\Delta}$ BMDMs

Flow cytometry analysis of $Tsc1^{fl/fl}$ and $Tsc1^{\Delta/\Delta}$ BMDMs stained with macrophage markers CD11b and F4/80. Histogram plots are shown as % of maximum. Red= $Tsc1^{fl/fl}$ and Blue= $Tsc1^{\Delta/\Delta}$

Supplementary Figure S2. Impaired M2c but not M2b Polarization in $Tsc1^{\Delta/2}$ BMDMs

a. M2c gene expression in $Tsc1^{fl/fl}$ and $Tsc1^{\Delta/\Delta}$ BMDMs stimulated with 10ng/ml IL-10 for the indicated times (n=2 representative experiments). **b**. M2b gene expression of $Tsc1^{fl/fl}$ and $Tsc1^{\Delta/\Delta}$ BMDMs stimulated simultaneously with LPS and non-opsonized (SRBC) or opsonized SRBC (IgG- SRBC) for 6h (Data representative of 3 independent experiments). Graphs are shown as mean ± SEM, *p<0.05, **p<0.01, ***p<0.001 determined by Student's t-tests.

Supplementary Figure S3. The JAK-STAT6 Pathway is Intact in $Tsc1^{\Delta/\Delta}$ BMDMs

a. Gene expression of components of the IL-4R-JAK-STAT6 pathway (n=2 representative experiments). **b.** STAT6 chromatin immunoprecipitation. Data is shown as fold enrichment for the *Arg1* promoter and is representative of 3 independent experiments. **c.** IL-4 fails to activate STAT1 in BMDMs. Immunoblot analysis of STAT1 activation in lysates from $Tsc1^{f/fl}$ and $Tsc1^{\Delta/\Delta}$ BMDMs stimulated with IL-4 or IFN (control) for the indicated time points. Graphs are shown as mean ± SEM.

Supplementary Figure S4. PPAR δ Activity is Normal in *Tsc1*^{Δ/Δ} BMDMs

Gene expression of *Atgl* in *Tsc1*^{fl/fl} and *Tsc1*^{Δ/Δ} BMDMs stimulated with IL-4 in the presence or absence of GW501516. DMSO vehicle was used as control. Data is shown as mean ± SEM (n=2 representative experiments).

Supplementary Figure S5. IL-4 and LPS-Induced Akt Activation is Attenuated in $Tsc1^{\Delta/\Delta}$ BMDMs

a-c. Immunoblots of $Tsc1^{fl/fl}$ and $Tsc1^{\Delta/\Delta}$ BMDMs stimulated with IL-4 as indicated. a. Analysis of Akt targets. b. Elevated levels of total and phosphorylated Grb10 in $Tsc1^{\Delta/\Delta}$ BMDMs. c. Analysis of phosphorylated and total PDK1. Phosphorylation of PDK1 is not inducible, and levels of phosphorylated and total PDK1 are normal in $Tsc1^{\Delta/\Delta}$ BMDMs. d. Immunoblot analysis of Akt signaling in lysates from $Tsc1^{f/fl}$ and $Tsc1^{\Delta/\Delta}$ BMDMs stimulated with LPS as indicated.

С

P-S6K (T389) short

Supplementary Figure S6. Akt Signaling is Critical for Polarization in $Tsc1^{\Delta/\Delta}$ BMDMs

a-b. WT BMDMs were pretreated with Aktviii for 1h before IL-4 stimulation. **a.** M2 gene expression was measured after 24h of IL-4 stimulation (representative of 3 independent experiments). **b.** Urea production normalized to total protein (n=3). **c.** M2 gene expression in myr-Akt $Tsc1^{\Delta/\Delta}$ BMDMs and EV $Tsc1^{\Delta/\Delta}$ BMDMs pretreated with rapamycin or DMSO for 30min and stimulated with IL-4 for 12h (n=2 representative experiments). **d.** Cytokine concentration in supernatants from myr-Akt $Tsc1^{\Delta/\Delta}$ BMDMs and EV $Tsc1^{\Delta/\Delta}$ BMDMs treated with LPS for 6h (n=3). Graphs are shown as mean ± SEM, *p<0.05, **p<0.01 determined by Student's t-tests.

Supplementary Figure S7. Intact M2 Polarization in *Rictor*^{Δ/Δ} BMDMs

a. Reduced phosphorylation of the Akt target Foxo1, but not Pras40 in *Rictor*^{Δ/Δ} BMDMs. Immunoblot analysis of lysates from *Rictor*^{f/fl}</sup> and*Rictor* $^{<math>\Delta/\Delta$} BMDMs stimulated with IL-4 as indicated. **b.** Urea production normalized to total protein after stimulation with IL-4 as indicated (n=2 representative experiments). **c**. M2 gene expression analysis in *Rictor*^{f/fl}</sup> and*Rictor* $^{<math>\Delta/\Delta$} BMDMs stimulated with IL-4 for 24h (n=2 representative experiments). Graphs are shown as mean ± SEM.</sup></sup>

Supplementary Figure S8. Akt Signaling is Critical for mTORC1 Activation in BMDMs

Immunoblot analysis of WT BMDMs pretreated with Aktviii for 1h before IL-4 stimulation for the indicated times. Reduced phosphorylation of S6 on S240/244 indicates attenuated mTORC1 activity in the presence of Aktviii.

Supplementary Figure S9. Full Blots for Main Text Figures

Supplementary Table S1. qPCR Primer Sequences.

Gene	Primer Sequence (5'-3')
	F: ACC TGG CCT TTG TTG ATG TCC CTA
Arg-1	R: AGA GAT GCT TCC AAC TGC CAG ACT
	F: TGC AAC AGC TGA GGA AGG ACT TGA
MgI-1	R: AAC CAA TAG CAG CTG CCT TCA TGC
	F: GCA TGA AGG CAG CTG CTA TTG GTT
MgI-2	R: TAG GCC CAT CCA GCT AAG CAC ATT
	F: TCC AGC TGA TGG TCC CAG TGA ATA
Fizz-1	R: ACA AGC ACA CCC AGT AGC AGT CAT
	F: AGA AGG GAG TTT CAA ACC T
Ym1	R: GTC TTG CTC ATG TGT GTA AGT GA
	F: TGG GCT ACA GGA GAA CCC AAC TTT
Mrc1	R: GCA GTG GCA TTG ATG CTG CTG TTA
	F: CTT CCG TTG GCC CAG ATA C
Pgc1β	R: CTG CTG GGC CTC TTT CAG TA
	F: ATG AAA TCA CCG CAG ACG ACA GGA
Fabp4	R: TGT GGT CGA CTT TCC ATC CCA CTT
	F: TCA TGC CAG TCG GAG ACA TGC TTA
Cd36	R: AAC TGT CTG TAC ACA GTG GTG CCT
	F: ACA AAG CCA GAG TCC TTC AGA GAG
<i>II-6</i>	R: TTG GAT GGT CTT GGT CCT TAG CCA
	F: TCT CAG CCT CTT CTC ATT CCT GCT
Tnf-α	R: AGA ACT GAT GAG AGG GAG GCC ATT
	F: GCT CTT ACT GAC TGG CAT GAG
II-10	R: CGC AGC TCT AGG AGC ATG TG
	F: GTG CGG CAG CTG TAC ATT GAC TTT
Tgfβ	R: TGT GTT GGT TGT AGA GGG CAA GGA
	F: TGT GAT GCC TCC TTG ATC GTG ACT
Stat3	R: CCA CAG GAT TGA TGC CCA AGC ATT
Bal2	F: TCG CAA TTA TGA AGG GCT CAC TGC
БСІЗ	R: TGC ACC ATG TTC AGG CTG TTG TTC

	F: TAG ACT TCA CGG CTG CCA ACA TCT
Socs3	R: GGA GCT AGT CCC GAA GCG AAA TCT
	F: TGC CCT CCT AAA CCA CCT CAG TTT
II-12 p35	R: TTT CTC TGG CCG TCT TCA CCA TGT
-	
	F: GGC TGG TGC AAA GAA ACA TGG ACT
II-12 p40	R: AGA GAC GCC ATT CCA CAT GTC ACT
	F: TGG AAC CAA AGG ACC TGA TGA CCA
Atgl	R: AGA TGC TAC CCG TCT GCT CTT TCA
	F: TTC TGC TGT GGA AAT GCA AG
Cd68	R: CAA TGA TGA GAG GCA GCA AG
	F: GAT AAG GAG TAC TAC ACA GTC AAG
Jak1	R: CAG ACA TCA GAG GCG ATA TAA A
	F: CTT GAT GAG CCA AGT ATC CTA C
Jak3	R: TGC TCC TAG ATA CAC AAA TTC C
	F: AGA TGC AAG CCT TCA GAA TCT GGG
ll4ra	R: CGT GGA TGC CCA AGA ACA CAC TAT
	F: TCA TGA CCA GGG AGT TCC TC
Pparγ	R: CAG GTT GTC TTG GAT GTC CTC
Pparð	F: AGC ACA TCT ACA ACG CCT ACC TGA
	R: TCG ATG TCG TGG ATG ACA AAG GGT
Hprt	F: TTT CCC TGG TTA AGC AGT ACA GCC C
	R: IGG CCT GTA TCC AAC ACT TCG AGA