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I. Details of the continuous time random walk model

To find the joint probability density P (ϕ1, t1; ∆ϕ, t2), we use the result for the two-point PDF calculated
for continuous time random walks (CTRW) in Refs. [33–35]. In Fourier-Laplace space, it becomes

P̃ (k1, p; k2, s) =
F̂ (p)F̂ (s)

[1− f̂(p)ḡ(k1)][1− f̂(s)ḡ(k2)]
+

1− ḡ(k2)

1− f̂(s)ḡ(k2)

L[f(t1 + ∆t)](p, s)− F̂ (p)F̂ (s)

1− f̂(p)ḡ(k1)
. (S1)

Eq. (10) directly follows for k1 = 0, k2 = 1, and the jump distribution g(ϕ) from Eq. (3). For the
exponential run time distribution, this expression simplifies dramatically and yields

P̃ (k1 = 0, p; k2 = 1, s) =
τrun

p [1− cosϕ0 + sτrun]
. (S2)

For the case of the power law distributed run times from Eq. (17), we proceed with the asymptotic
analysis, assuming t1, t2 � τ0, meaning s, p → 0. The leading terms in this expansion after the inverse
Laplace transform yield Eq. (18).

In the following, we derive our main result for the velocity autocorrelation function, MSD, and diffusion
coefficient of the run-reverse-flick pattern. As defined in Eq. (19), we denote the probability density
function of turning angles at reversals and flicks by gr(ϕ) and gf (ϕ), respectively. The probability densities
of run times after reversals and flicks are denoted as fr(τ) and ff (τ), respectively. The corresponding
survival probabilities are Fr,f (τ) = 1 −

∫ τ
0

dt fr,f (t). At this stage, we consider a CTRW in the angle
ϕ(t) without rotational diffusion during the run events; due to Eq. (6), the latter can be included in
the velocity autocorrelation function afterwards. To formulate the CTRW, we introduce the auxiliary
probability densities νr,f (ϕ, t), with νr,f (ϕ, t)dϕdt denoting the probability that a reversal (r) or flick
(f) occurs during the time interval [t, t+dt], while the cell moves along the direction [ϕ,ϕ+dϕ]. We also
refer to νr,f (ϕ, t) as the frequency of reversals and flicks. Similar to the standard CTRW model, these
densities satisfy the integral equations (see Ref. [33] for example)

νf (ϕ, t) =

∫ +∞

−∞
dψ

∫ t

0

dτ fr(τ)gr(ψ)νr(t− τ, ϕ− ψ) +

∫ ∞
0

dτ
N0
r (ϕ, τ)fr(t+ τ)

Fr(τ)
, (S3a)

νr(ϕ, t) =

∫ +∞

−∞
dψ

∫ t

0

dτ ff (τ)gf (ψ)νf (t− τ, ϕ− ψ) +

∫ ∞
0

dτ
N0
f (ϕ, τ)ff (t+ τ)

Ff (τ)
, (S3b)

where N0
r,f (ϕ, τ) is the initial condition for the probability density that a cell has direction ϕ at time t1

after the reversal (flick) occured time τ ago. The probability densities Pr,f (ϕ, t) for a cell to be in the
run mode after a reversal or flick with direction ϕ at time t is then expressed as

Pr,f (ϕ, t) =

∫ ∞
0

dτ Nr,f (ϕ, t, τ), (S4)
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and P (ϕ, t) = Pr(ϕ, t) + Pf (ϕ, t) gives the total probability density that a cell has direction ϕ at time t.
To complete the set of CTRW equations, we couple the densities Pr,f (ϕ, t) to the frequencies νr,f (ϕ, t)

via [33]

Pr(ϕ, t) =

∫ +∞

−∞
dψ

∫ t

0

dτ Fr(τ)gr(ψ)νr(t− τ, ϕ− ψ) +

∫ ∞
0

dτ
N0
r (ϕ, τ)Fr(t+ τ)

Fr(τ)
, (S5a)

Pf (ϕ, t) =

∫ +∞

−∞
dψ

∫ t

0

dτ Ff (τ)gf (ψ)νf (t− τ, ϕ− ψ) +

∫ ∞
0

dτ
N0
f (ϕ, τ)Ff (t+ τ)

Ff (τ)
. (S5b)

The initial condition N0
r,f (ϕ, τ) is of most general form. For our purpose of calculating P (ϕ1, t1; ∆ϕ, t2),

it will be given as a result of the previous evolution during the time t1. In that case, also t2 = t1 + t and
ϕ = ∆ϕ. We introduce the notation

P 0
r,f (ϕ, τ) =

N0
r,f (ϕ, τ)Fr,f (t+ τ)

Fr,f (t)
, (S6a)

ν0r,f (ϕ, τ) =
N0
r,f (ϕ, τ)fr,f (t+ τ)

Fr,f (t)
, (S6b)

and after a Fourier-Laplace transform and some algebraic manipulations, we obtain

ν̃f (k, s) =
f̂r(s)ḡr(k)ν̃0r (k, s) + ν̃0f (k, s)

1− f̂r(s)f̂f (s)ḡr(k)ḡf (k)
, (S7a)

ν̃r(k, s) =
f̂f (s)ḡf (k)ν̃0f (k, s) + ν̃0r (k, s)

1− f̂r(s)f̂f (s)ḡr(k)ḡf (k)
. (S7b)

For the densities P̃r,f (k, s), we find

P̃f (k, s) = P̄ 0
f (k)F̂f (s) + ḡf (k)F̂f (s)

f̂r(s)ḡr(k)ν̃0r (k, s) + ν̃0f (k, s)

1− f̂r(s)f̂f (s)ḡr(k)ḡf (k)
, (S8a)

P̃r(k, s) = P̄ 0
r (k)F̂r(s) + ḡr(k)F̂r(s)

f̂f (s)ḡf (k)ν̃0f (k, s) + ν̃0r (k, s)

1− f̂r(s)f̂f (s)ḡr(k)ḡf (k)
. (S8b)

To proceed, we have to take into account the correct initial conditions (previous evolution during t1). We
restrict to the simpler and experimentally relevant case of exponential run time distributions,

fr,f (τ) =
1

τr,f
exp

(
− τ

τr,f

)
, τr, τf > 0. (S9)

Now, we have to find the time evolution during t1. Although we can implement an arbitrary initial
condition at t = −t1, we will proceed in a different way. It is easy to show that

P 0, eq
r,f =

τr,f
τr + τf

(S10)

is the steady state density and for t ∈ [−t1, 0], Pf,r(k1 = 0, t) = P 0, eq
f,r = const. Therefore, we use the

following, now intermediate conditions,

ν̂0r (s) = P 0, eq
f f̂f (s), (S11a)

ν̂0f (s) = P 0, eq
r f̂r(s), (S11b)

P 0
f,r = P 0, eq

f,r , (S11c)
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and insert them into Eq. (S8). This gives

P̃ (k1 = 0, p; k2, s) = P̃r + P̃f =
1

p

F̂r(s)
(
f̂f (s)ḡr(k2)τf + τr

)
+ F̂f (s)

(
f̂r(s)ḡf (k2)τr + τf

)
(τf + τr)

(
1− f̂r(s)f̂f (s)ḡr(k2)ḡf (k2)

) . (S12)

Finally, we consider explictly the turning angle distributions, ḡr,f (k2) = cos (k2ϕr,f ), which gives ḡr(k2 =

1) = −1 and ḡf (k2 = 1) = 0. Using Eq. (S9), it follows that f̂r,f (s) = 1
1+sτr,f

and F̂r,f (s) =
τr,f

1+sτr,f
, and

we finally arrive at

P̃ (k1 = 0, p; k2 = 1, s) =
1

p

τ2r − τfτr(1− sτr) + τ2f (1 + sτr)

(1 + sτf )(1 + sτr)(τf + τr)
. (S13)

If we combine Eq. (S13) with Eqs. (8,9), we recover the velocity autocorrelation function from Eq. (20).
Subsequent double-integration in time provides the MSD

〈
[r(t)− r(0)]2

〉
rw

=
2v2

(τf + τr)(τf − τr)

(
τ3f (τf − 2τr)e

−t/τf − τ3r (τr − 2τf )e−t/τr

+
[
t(τ2f − τfτr + τ2r )− (τf − τr)2(τf + τr)

]
(τf − τr)

)
. (S14)

The MSD displays linear scaling for large times with the diffusion coefficient

D =
v2

3

τ3r + τ3f

(τr + τf )
2 . (S15)

After including rotational diffusion as well, the diffusion coefficient becomes the expression from Eq. (24).

II. Estimate of the strength of the chemotactic response

Here, we present an estimate for the strength of the chemotactic response W from Eq. (26). We re-
fer to recent measurements by Vuppula et al. [24] for the chemotactic drift speed vd of E. coli in
response to the amino acid serine. In the range of experimentally accessible small gradients with
|∇c| = 10−3 . . . 10−2µMµm−1 = 0.6 . . . 6µm−4, vd is estimated as vd = 0.5 . . . 1.5µm s−1. Thus, we
choose a small gradient |∇c| = 1µm−4 and set vd = 1µm s−1. Further, we use v = 19µm s−1, α = 0.33,
λ = 1 s−1, and Dr = 0.2 s−1 [13, 24, 42, 43]. Solving the result for vd from Eq. (27) [47] for W yields the
chemotactic strength W = 0.0458µm3.

III. Alternative derivation of the velocity autocorrelation func-
tion

We now present a different derivation for the velocity autocorrelation function for run-reverse-flick motion,
which is valid for two and three spatial dimensions. In this context, we consider a more general random
walk with two alternating tumbling events, as depicted in Fig. S1. The angular changes during tumbling
are specified by the preferential turning angles ∆ϕ1 and ∆ϕ2 and expressed in terms of the persistence
parameters α = 〈cos ∆ϕ1〉 and β = 〈cos ∆ϕ2〉. It turns out that only the mean cosines of the turning
angles, α and β, enter the directional correlation function and the corresponding diffusion coefficient.
Note that different turning angle distributions can yield the same persistence parameter. However, in the
exact limiting cases of α, β = ±1, only delta-peaked distributions at angles 0◦ and 180◦ are possible.
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Figure S1. Pattern of the random walk with two alternating tumbling events. The
persistence parameters α = 〈cos ∆ϕ1〉 and β = 〈cos ∆ϕ2〉 correspond to the two preferential turning
angles ∆ϕ1 and ∆ϕ2, respectively. The walker moves with constant speed v along the direction e(t),
and the run times are exponentially distributed with mean τrun.

Our goal is to determine the directional part of the velocity autocorrelation function, Crw(t, t′) =
v2 〈e(t) · e(t′)〉rw. We first neglect rotational diffusion during the run events and assume an exponential
run time distribution f(τ) = λ exp (−λτ), where λ is the tumbling rate and the mean run time is
τrun = λ−1. The survival probability that a run that starts at t = 0 is not interrupted before time t is
given by F (t) = 1−

∫ t
0

dτ f(τ) = exp (−λt). For a random walk whose first turning event is specified by
α, the directional correlation function is given by

〈e(t) · e(0)〉rw = F (t) +

∫ t

0

dt1 f(t1)αF (t− t1) +

∫ t

0

dt2

∫ t2

0

dt1 f(t1)αf(t2 − t1)βF (t− t2)

+

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 f(t1)αf(t2 − t1)βf(t3 − t2)αF (t− t3) + . . . (S16)

The interpretation of the terms on the right-hand side of Eq. (S16) is as follows. A run may start at t = 0
and is not interrupted till t, such that the direction of motion is constant; a run may also take place from
time 0 . . . t1, then tumbling of type α occurs, and a second run without tumbling follows during t1 . . . t;
the next term considers the possibility of a run (0 . . . t1), tumbling of type α at t1, another run (t1 . . . t2),
tumbling of type β at t2, and one more run up to time t, etc. The emergence of products αNαβNβ in the
higher-order terms of Eq. (S16) stems from the occurrence of Nα and Nβ tumbling events of type α and
β, respectively. It is important to note that Eq. (S16) is valid in two and three dimensions.

To calculate the series in Eq. (S16), we observe that for the exponential distribution f(t1)f(t2− t1)×
. . .× f(tn − tn−1)F (t− tn) = λne−λt. Using∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1 =
tn

n!
, (S17)

Eq. (S16) can be written as

〈e(t) · e(0)〉rw = e−λt
[
1 + α

λt

1!
+ αβ

(λt)2

2!
+ α2β

(λt)3

3!
+ α2β2 (λt)4

4!
+ . . .

]
, (S18)

where the time-dependent terms e−λt (λt)k

k! coincide with the Poisson distribution. Using series expansions
for hyperbolic functions results in the expression

〈e(t) · e(0)〉rw = e−λt
[√

α

β
sinh

(√
αβ λt

)
+ cosh

(√
αβ λt

)]
. (S19)
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Eq. (S19) is not symmetric with respect to interchanging α↔ β. This reflects the fact that, so far, each
random walker interrupts the first run with a tumbling event of type α. However, we are interested in
modeling an ensemble of walkers where the first tumbling event is either of type α or β with the same
probability. To generalize Eq. (S19) to an ensemble average for arbitrary times, we thus take into account
that, when choosing a walker of the ensemble, the probability is 1/2 for the next tumbling event to be α
or β. Formally, we symmetrize Eq. (S19) with respect to α and β, and obtain

〈e(t) · e(t′)〉rw = e−λ|t−t
′|
[
α+ β

2
√
αβ

sinh
(√

αβ λ|t− t′|
)

+ cosh
(√

αβ λ|t− t′|
)]
. (S20)

Next, we generalize the result for 〈e(t) · e(t′)〉 if we also take into account rotational diffusion during
the runs. Rotational diffusion in three dimensions with rotational diffusion constant Dr leads to 〈e(t) ·
e(t′)〉rot = exp (−2Dr|t− t′|). With rotational diffusion, Eq. (S16) is modified according to

〈e(t) · e(0)〉 = F (t)e−2Drt +

∫ t

0

dt1 f(t1)e−2Drt1αF (t− t1)e−2Dr(t−t1) (S21)

+

∫ t

0

dt2

∫ t2

0

dt1 f(t1)e−2Drt1αf(t2 − t1)e−2Dr(t2−t1)βF (t− t2)e−2Dr(t−t2) + . . .

Compared to Eq. (S16), Eq. (S21) contains an additional factor of exp(−2Drt). Note that this statement
also holds true if the run times are not exponentially distributed; it corresponds to the factorization
according to Eq. (7). The MSD is given by

〈
[r(t)− r(0)]2

〉
=

v2

[(1− αβ)λ2 + 4Dr(λ+Dr)]2

[ [
(1− αβ)λ2 + 4Dr(λ+Dr)

][
(2 + α+ β)λ+ 4Dr

]
t

+

{
λ2
[
α+ β + αβ(4 + α+ β)

]
+ 4Drλ(α+ β + 2αβ) + 4D2

r(α+ β)
√
αβ

sinh(
√
αβλt)

+2
[
λ(1 + α) + 2Dr

][
λ(1 + β) + 2Dr

]
cosh(

√
αβλt)

}
e−(λ+2Dr)t

−2
[
λ(1 + α) + 2Dr

][
λ(1 + β) + 2Dr

]]
, (S22)

from which we deduce the diffusion coefficient

D = lim
t→∞

〈
[r(t)− r(0)]2

〉
6t

=
v2

6

(2 + α+ β)λ+ 4Dr

(1− αβ)λ2 + 4Dr(λ+Dr)
. (S23)

Setting α = −1 and β = 0 yields the diffusion coefficient for run-reverse-flick motion from Eq. (23);
setting α = β provides Eq. (14). Recall that this derivation, based on Eq. (S21), is independent of the
spatial dimension. In addition, it does not depend on the details of the distribution of turning angles
∆ϕ1 and ∆ϕ2, but only on the persistence parameters α and β.

IV. Calculation of the chemotactic drift speed for run-tumble-
flick motion

Here, we calculate the chemotactic drift speed vd for the motility pattern run-tumble-flick. This is the
random walk where tumbling events, specified by persistence parameter α, alternate with flicks, where a
new direction of motion is randomly chosen. In the random walk scheme of Fig. S1, this corresponds to
setting β = 0. For V. alginolyticus, the reversal between forward and backward runs results in α = −1.
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The run times are exponentially distributed, and for simplicity, we assume a single mean run time
τrun = λ−1 for forward and backward motion in a homogeneous environment. We consider a small
chemical gradient |∇c| in z direction, and the concentration c(t) at the cell’s position z(t) becomes

c(t) = |∇c| z(t). (S24)

Next, we generalize de Gennes’ approach from Eq. (25) for the time-dependent rates of forward and
backward runs,

λi(t) = λ

(
1−

∫ t

−∞
dt′ c(t′)R(t− t′)

)
, i = r, b (S25)

where the index r denotes the forward run after the flick, and b the backward run after the reversal. Note
that we assume the same chemotactic response function after both kinds of turning event; a more general
calculation can be found in Ref. [52]. The adaptive response,

∫∞
0

dt R(t) = 0, has allowed us to set a
possible constant concentration in Eq. (S24) to zero, as it does not affect the tumbling rates in Eq. (S25).
We will use the experimentally measured response function R(t) of E. coli [Eq. (26)], as we are primarily
interested in understanding the influence of the random walk pattern on the chemotactic drift speed.

To simplify forthcoming calculations, we make use of the structure of Eq. (S25) and first consider the
special case of a delta-response in time R(t) = Aδ(t − T ) with delay time T and strength A, as it was
done in Refs. [47, 48]. We denote the chemotactic drift speed for the delta-response as vδ. Having found
this intermediate result for vδ, it is generalized to the chemotactic drift speed vd by integrating vδ with
the response function R(t), according to

vd =

∫ ∞
0

dT R(T )
vδ(T )

A
. (S26)

We calculate vδ for a random walk with a flick at t = 0. The flick totally randomizes the direction of the
subsequent forward run, which is interrupted at time tr. At tr, the direction of motion is changed with
persistence parameter α and the particle performs a backward run of duration tb. As every flick event
destroys the directional persistence and memory of the previous random walk steps, vδ is calculated by
considering the mean displacement along the z axis during one cycle of the run-tumble-flick process. To
obtain vδ in a first-order expansion of |∇c|, we determine the average displacement of a forward run 〈zr〉
and a subsequent backward run 〈zb〉. As these expressions are first order in |∇c|, the mean duration of
the cycle is given by 2τrun, and the chemotactic drift speed for the delta-response becomes

vδ =
〈zr〉+ 〈zb〉

2τrun
. (S27)

The random walker starts with a flick at t = 0 from the initial position z = 0. We need to calculate
the displacement along the direction of the gradient, the z axis, during the forward run, t ∈ [0, tr], and
the subsequent backward run, t ∈ [tr, tr + tb]. The probability density pr(0 → tr) that a forward run
starts at t = 0 and stops at tr is given by

pr(0→ tr) = − d

dtr
exp

(
−
∫ tr

0

dt′ λr(t
′)

)
, (S28a)

pb(tr → tr + tb) = − d

dtb
exp

(
−
∫ tr+tb

tr

dt′ λb(t
′)

)
, (S28b)

and pb(tr → tr + tb) is the probability density that a backward run starts at tr and stops at tr + tb. The
time-dependent rates λi(t) (i = r, b) due to chemotaxis are given in Eq. (S25). Taking a delta-response
R(t) = Ai δ(t− Ti) with strength Ai and delay time Ti, and using Eq. (S24), we can write the rates as

λi(t) = λ [1−Ai|∇c| z(t− Ti)] , (S29)
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and they thus depend on the previous positions z(t− Ti).
The mean displacement 〈z〉 of the forward run 〈zr〉 and subsequent backward run 〈zb〉 reads

〈z〉 = 〈zr〉+ 〈zb〉 (S30a)

=

〈∫ ∞
0

dtr pr(0→ tr)z(tr)

〉
+

〈∫ ∞
0

dtr

∫ ∞
0

dtb pr(0→ tr)pb(tr → tr + tb)z(tb)

〉
.(S30b)

The averages 〈· · ·〉 in Eq. (S30) are taken over all possible paths due to random swimming directions after
the flick event. In addition, they represent ensemble averages to account for the rotational diffusion during
the runs. Without rotational diffusion, we could write the positions in Eq. (S30b) as z(ti) = vz(ti)ti,
where vz(t) is the z component of the velocity v(t). To proceed, we shift the averages 〈· · ·〉 into the
integrals in Eq. (S30b).

We start to calculate 〈zr〉:

〈zr〉 =

∫ ∞
0

dtr

〈[
− d

dtr
exp

(
−
∫ tr

0

dt′ λr(t
′)

)]
z(tr)

〉
(S31a)

=

∫ ∞
0

dtr

〈
exp

(
−
∫ tr

0

dt′ λr(t
′)

)
dz(tr)

dtr

〉
(S31b)

=

∫ ∞
0

dtr e
−λtr

(
〈vz(tr)〉+ λAr|∇c|

∫ tr

0

dt′ 〈z(t′ − Tr)vz(tr)〉
)
. (S31c)

In the first step, a partial integration led us to Eq. (S31b). Then we introduced vz(tr) = dz(tr)
dtr

as the
speed in z direction, and substituted Eq. (S29) into (S31b); after expanding the exponential, we only
kept the first-order terms in |∇c| to arrive at Eq. (S31c). The averages in this equation will be calculated
without chemotaxis to remain first-order in |∇c|. We immediately find 〈vz(tr)〉 = 0, as the direction of

motion after the flick at t = 0 is random. Further, we use z(t) =
∫ t
0

ds vz(s) and get

〈zr〉 = |∇c|Ar
∫ ∞
0

dtr λe
−λtr

∫ tr

0

dt′
∫ t′−Tr

0

ds 〈vz(s)vz(tr)〉. (S32)

Without chemotaxis, the velocity distribution is isotropic, which implies

〈vz(s)vz(tr)〉 =
v2

3
〈e(s) · e(tr)〉 , (S33)

and the directional correlation function reads

〈e(s) · e(tr)〉 =

{
e−2Dr(tr−s) 0 ≤ s < tr,

0 , else.
(S34)

After inserting Eqs. (S33) and (S34) into Eq. (S32), we perform the resulting integrals and obtain the
mean displacement of a forward run,

〈zr〉 = |∇c|Ar
v2

3

e−(λ+2Dr)Tr

(λ+ 2Dr)2
, (S35)

which is proportional to the gradient |∇c| and the response strength Ar. To check for consistency, we
note that Eq. (S35) agrees with Locsei’s intermediate result for α = 0 from Ref. [47].

Now, we turn to the mean displacement of the backward run 〈zb〉 from Eq. (S30). We proceed in the
same way as before and obtain up to first order in |∇c|:

〈zb〉 =

∫ ∞
0

dtr

∫ ∞
0

dtb λe
−λtr−λtb

{
〈vz(tb)〉 −Ar |∇c| 〈z(tr − Tr)vz(tb)〉

+λAr|∇c|
∫ tr

0

dt′ 〈z(t′ − Tr)vz(tb)〉+ λAb|∇c|
∫ tr+tb

tr

dt′ 〈z(t′ − Tb)vz(tb)〉
}
. (S36)
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Again, the expectation values are calculated without chemotaxis, such that 〈vz(tr)〉 = 0 and Eq. (S33)
holds. Be aware that vz(tb) is the speed in z direction at the absolute time tr + tb. The directional
correlation function becomes

〈e(s) · e(tb)〉 =


e−2Drtb α e−2Dr(tr−s) , 0 ≤ s < tr,

e−2Dr(tr+tb−s) , tr ≤ s < tr + tb,

0 , else.

(S37)

To obtain the first line of Eq. (S37), we made the decomposition 〈e(s) · e(tb)〉 = 〈e(tb) · e(t+r )〉 〈e(t+r ) ·
e(t−r )〉 〈e(t−r ) · e(s)〉, see also Ref. [47]. We obtain

〈zb〉 =
|∇c| v2

3(λ+ 2Dr)3

{
− 2αArDre

−(λ+2Dr)Tr

+Ab e
−(λ+2Dr)Tb

[
2Dr(1 + αλTb) + λ[1 + α(1 + λTb)]

]}
. (S38)

Note that the dependence of 〈zb〉 on Ar reflects a chemotactic coupling between forward and backward
runs. Finally, we consider equal strength of the chemotactic response Ar = Ab = A and Tr = Tb = T ,
and combine all preceding results according to Eq. (S27). In first-order in |∇c|, we thus arrive at the
chemotactic drift speed for the delta-response,

vδ = A|∇c| v2λe−(λ+2Dr)T
λ[2 + α(1 + λT )] + 2Dr[2 + α(λT − 1)]

6(λ+ 2Dr)3
. (S39)

The final drift speed vd from Eq. (28) is obtained by integrating vδ with the response function from
Eq. (26) according to Eq. (S26).


