Extracting tag-hierarchies
Supporting Information

S1 Algorithms

S1.1  Algorithm A
S1.1.1 Complexity

The pseudo code of the algorithm would be to long to be displayed in a single page, thus, we divided it
into two parts. The first part, corresponding to the preparation of the weighted network between the tags
and the building of local hierarchies is given in Algorithm S1. By assuming that the number of tags on

Algorithm S1 Algorithm A, 1% part: building local hierarchies.

1: for all objects: objectl do

2: for all tags appearing on objectl: tagl do

3: for all tags appearing on objectl: tag2 do coappearances(tagl,tag2)+=1
4: end for

5: end for

6: end for

7. for all tags: tagl do

8: max= maximal coappearances(tagl,tag2)

9: for all tags: tag2 do

10: if coappearances(tagl, tag2) >= w * max then

11: calc zscore(tagl,tag2)

12: strongpartners(tagl, tag2) = zscore(tagl, tag2)

13: end if

14: end for

15: end for

16: for all tags: tagl do

17: parent = undef

18: for all strongpartners of tagl sorted to descending order: tag2 do
19: if parent = undef and not exists strongpartners(tag2, tagl) then
20: parent = tag?2

21: end if

22: end for

23: end for

one object is O(1), the number of operations needed for generating the weighted co-occurrence network
between the tags can be given by the number of objects, @, as O(Q). According to our experience,
the resulting co-occurrence network between the tags is usually sparse, thus, the number of links in the
network between the tags, M, and the number of tags, N, are similar in magnitude, O(M) = O(N),
and the average number of links of the tags is O(1). According to that, the individual thresholding of
the network based on the strongest link on each tag also needs O(N log N) operations. Similarly, the
calculation of the z-score and choosing the in-neighbor with the highest value as a parent need also
O(M log M) operations.



In the next phase, the smaller isolated subgraphs under the local roots have to be assembled into a sin-

gle hierarchy, as shown in Algorithm S2. Choosing the global root of the hierarchy needs O(N) operations,

Algorithm S2 Algorithm A, 2°¢ part: assembly into a global hierarchy.

1: if there are more components then

2: for all roots: root do

3: h(root) = entropy of root

4: for all tags in the component of root: tagl do

5: component(tagl) = root

6: end for

7 end for

8: global_root = root with highest entropy

9: for all roots except the global: root do

10: suggested_parent(root) = undef

11: for all coappearing tags sorted to descending coappearances: tag2 do
12: if suggested_parent(root) = undef and component(tag2) is not root then
13: suggested_parent(root) = tag2

14: end if

15: end for

16: end for

17: for all roots appearing in suggested_parent: root do

18: tagl = root

19: empty visited

20: while does not exists visited(tagl) and exists suggested_parent(tagl) do
21: tagl = component(suggested_parent(tagl))

22: visited(tagl) = 1

23: end while

24: if exists visited(tagl) then

25: for all roots in visited: root2 do looped(root2) = 1 delete suggested_parent(root2)
26: end for

27: end if

28: end for

29: for all roots in looped, sorted to descending order of h: root do

30: for all tags coappearing with root: tagl do

31: if not exists suggested_parent(root) then

32: check whether tagl is below root

33: if tagl is not below root then suggested_parent(root) = tagl

34: end if

35: end if

36: end for

37: if not exists suggested_parent(root) then suggested_parent(root) = global_root
38: end if

39: end for

40: end if

and similarly, choosing the parent of a local root also needs at most O(NN) operations. During this process
we need to detect (and correct) possible newly created loops, requiring at most O(N) operations. Based
on the above, the resulting overall complexity of algorithm A is O(Q)+O(M log M) = O(Q)+O(N log N),
where we assumed that the co-occurrence network between the tags is sparse, i.e., O(M) = O(N).



S1.1.2 Optimizing the parameter w

The parameter w € [0, 1] in algorithm A is corresponding to the local weight threshold used for throwing
away weak connections in the tag co-occurrence network. In order to find the optimal value for w, we
measured the LMI between the reconstructed hierarchy and the exact hierarchy as a function of w in
case of the protein function data set. The results of this experiment are shown in Fig.S1. Although I,
is showing only minor changes over the whole range of possible w values, a maximal plateau can still
be observed between w = 0.3 and w = 0.55. Based on this, throughout the experiments detailed in our
paper, we used algorithm A with w = 0.4.
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Figure S1. Optimizing the parameter w. We show the LMI as a function of w for the protein
function data set.

S1.2  Algorithm B
S1.2.1 Complexity

The pseudo code for the algorithm is given in Algorithm S3. The preparation of the tag co-occurrence
network is the same as in case of algorithm A, with a complexity of O(Q), and similarly, the calculation
of the z-score needs O(M) operations. To evaluate the eigenvector centrality, we simply use the power
iteration method on the filtered co-appearance matrix, (see the pseudo code), which needs O(N) opera-
tions, for the typical case of a sparse matrix. The hierarchy is assembled bottom up, and the calculation
of the scores for the possible parents of a given tag requires O(N -log N) operations, assuming that the
structure of the complete DAG is similar to a tree with a constant branching number. (In case it is
chain-like, this is modified to O(N?), whereas for a star-like topology, it is only O(N)). The resulting
overall complexity of the algorithm is O(Q) + O(N -log N).



Algorithm S3 Algorithm B

1: for all tags: tagl do

2 for all tags: tag2 do

3 calc zscore(tagl, tag2)
4 end for

5: end for
6
7
8

: for all tags: tagl do

for all tags: tag2 do
if zscore(tagl, tag2) > threshold B or coappearances(tagl, tag2) >= 0.5 * objects(tagl) or
coappearances(tagl, tag2) >= 0.5 * objects(tag2) then

9: M(tagl, tag2) = coappearances(tagl, tag2)
10: strength(tagl) += coappearances(tagl, tag2)
11: end if
12: end for
13: end for

14: for all tags: tagl do
15: centrality(tagl) = strength(tagl)

16: end for

17: for i=1, i<=100 do

18: sum = 0

19: for all tags: tagl do

20: for all tags: tag2 do

21: temp_centrality (tagl) = M(tagl, tag2) * centrality(tag2)

22: end for

23: sum += temp_centrality(tagl)

24: end for

25: for all tags: tagl do centrality(tagl) = temp_centrality(tagl) / sum
26: end for

27: end for

28: for tags sorted to ascending centralities: tagl do

29: empty score;

30: for coappearing partners of tagl: tag2 do

31: score(tag2) = zscore(tagl, tag2)

32: end for

33: for descendants of tagl: desc do

34: for coappearing partners of desc: tag2 do

35: if tag2 coappears with tagl and centrality(tag2) ; centrality(tagl) and (zscore(tagl, tag2)

> threshold B or coappearances(tagl, tag2) >= 0.5 * objects(tagl)) and (zscore(desc, tag2) >
threshold_B or coappearances(desc, tag2) >= 0.5 * objects(desc)) then

36: score(tag2) += zscore(desc, tag2)
37: end if

38: end for

39: end for

40: if score is not empty then

41: parent(tagl) = highest scoring tag

42: end if

43: end for




S1.2.2 Optimizing the z-score threshold

The z-score threshold is an important parameter in algorithm B, which is used for pruning the network
of co-occurrences between the tags by throwing away irrelevant connections. In order to optimize this
parameter, we have run tests on the “hard” synthetic data set, introduced in Section “Results on synthetic
data” in the main paper. The reason for this choice instead of, e.g., the protein function data set as in
Sect.S1.1.2, is that algorithm B showed best performance on this data set. In Fig.S2. we show the LMI
between the reconstructed hierarchy and the exact hierarchy as a function of the z-score threshold z*.
Although the obtained curve is rather flat in most of the examined region, setting the threshold to z* = 10
in general seems as a good choice: below z* = 5 the quality drops down, whereas no significant increase
can be observed in I;, between z* = 10 and z* = 20. By choosing z* = 10, we ensure good quality, and
also avoid throwing away too many connections.
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Figure S2. Optimizing the z-score threshold. We show the LMI as a function of the z-score
threshold for the “hard” synthetic data set.

S2 Normalized mutual information

S2.1 NMI by partitioning of the tags

As mentioned in the main paper, a very important application of the concept of the NMI is given in
community detection, where this measure can be used to quantify the similarity between partitions of
the same network into communities by two alternative methods [1,2]. The formula providing the NMI
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Figure S3. Mapping from hierarchies to communities. a) A simple intuitive mapping from the
DAG to a communities of the tags in the DAG is given by nested sets, as shown here for G; and G,
resulting in partitions a1 and as. b) If we use instead communities given by the union of all
descendants from non-leaf tags, (always excluding the given tag itself), the NMI given by (S1) becomes
equivalent to the NMI defined for hierarchies in Eq.(1) in the main paper.

between community partitions o and 5 can be given as

C‘l Cﬂ N.:N
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where C, and Cs denote the number of communities in the two partitions, N; and N; stand for the
number of nodes in communities ¢ and j respectively, with IV;; giving the number of common nodes in
7 and 7, and finally, N denoting the total number of nodes in the network. This measure can be used
e.g., when judging the quality of a community finding method run on a benchmark for which the ground
truth communities are known.

Meanwhile, (S1) is in complete analogy with our definition of the NMI for a pair of hierarchies,
(Eq.(1) in the main paper): if we convert the hierarchies to be compared into community partitions in an
appropriate way, the two measures become equivalent. Probably the most natural idea for a mapping from
a DAG to communities of the tags in the DAG is turning the original “order” hierarchy represented by the
DAG into a “containment” hierarchy of nested sets, as shown in Fig.S3a., (with each set corresponding
to the union of tags in a given branch of the DAG). However, by applying (S1) to the partitions obtained
in this way we obtain different results compared to Eq.(1) in the main paper, and the resulting similarity
measure does not approach 0 even for independent random DAGs. The reason for this effect is that leafs
in the DAG provide communities consisting of single nodes, and due to the relatively large number of
leafs in a general DAG, we always obtain a non vanishing portion of exactly matching communities.

The mapping from a DAG to communities providing results equivalent to our NMI definition is
obtained by associating with every tag in the DAG the union of its descendants, excluding the tag itself,
(see Fig.S3b for illustration). This way the leafs appear only in the communities corresponding to their
ancestors, thus, the emergence of a large number of communities with only a single member is avoided.

S2.2 Gene Ontology DAG

In Fig.1. in the main paper we have examined the behavior of the NMI between a binary tree and
its randomized counterpart as a function of the fraction of rewired links. Here we show similar results



obtained for the exact hierarchy of our protein data set, obtained from the Gene Ontology [3]. In
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Figure S4. NMI decay for the exact hierarchy of protein tags and its randomized
counterpart. We plotted I as given in Eq.(1) of the main paper as a function of the randomly rewired
links, f. The three different curves correspond to rewiring the links in reverse order according to their
position in the hierarchy (purple circles), rewiring in random order (blue squares) and rewiring in the
order of the position in the hierarchy (green triangles). The red lines illustrate the calculation of the
linearized mutual information for the reconstruction result obtained from algorithm A.

Fig.S4. the NMI defined in Eq.(1) of the main paper is shown for the exact hierarchy and its randomized
counterpart as a function of the randomly rewired links, f. The three different curves correspond to three
different orders in which the links were chosen for the rewiring: in case of the purple curve we started the
rewiring with links pointing to leafs, and continued in reverse order according to the hierarchy, in case of
the blue curve, the links were chosen in random order, while in case of the green curve, we started the
rewiring at the top of the hierarchy, and continued in the order according to the hierarchy. Similarly to
Fig.1. in the main paper, all three curves decay to 0 as f — 1, thus, the similarity becomes 0 when the
compared DAGs become independent. However, the behavior in the small and medium f regime is rather
different: the green curve drops below Igo rana = 0.5 already at f = 0.05, while the blue curve shows a
moderate decrease and the purple curve decays even more mildly. Similarly to Fig.1. in the main paper,
this justifies our statement that the NMI is sensitive also to the position of the links in the hierarchy:
rewiring links high in the hierarchy has a larger effect on the similarity compared to rewiring links close
to the leafs. Interesting, in the medium f* regime a crossover can be observed between the green- and
the blue curve. The possible explanation for this effect lies in the non-trivial, nor random, nor regular
structure of the original DAG.

The red lines in Fig.S4. demonstrate the calculation of the linearized mutual information for the
results obtained from algorithm A: The obtained NMI value of I, = 0.37 between the output of the
algorithm and the exact DAG is projected to the f axis using the blue curve, resulting in f* = 0.22. The
linearized mutual information, [}y, is given by 1 — f*, resulting Ij;, = 0.78.



S3 Further results on Flickr and IMDb

S3.1 Additional samples from the Flickr hierarchy

The exact hierarchy between the tags appearing in Flickr is not known, thus, the quality of the extracted
hierarchy can be judged only by “eye”, i.e., by looking at smaller subgraphs, whether they make sense
or not. In Fig.3. of the main paper we have already shown a part of the branch under “reptile” in the
hierarchy obtained from algorithm B. Here we show further examples in the same manner. In Fig.S5.
we depict a part of the hierarchy under the tag “winter”, with very reasonable descendants like “snow”,
“ski” | “cold”, “ice”, etc. Similarly, in Fig.S6. we show a part of the descendants of “rodent”, displaying
again a rather meaningful hierarchy.
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Figure S5. Partial subgraph of the descendants of “winter” in the hierarchy between
Flickr tags obtained from algorithm B. Stubs (in dashed line) signal further descendants not
shown in the figure, and the size of the nodes indicate the total number of descendants.
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Figure S6. A part of the descendants of “rodent” in the hierarchy between Flickr tags.
Similarly to Fig.S5., the overall hierarchy behind the subgraph shown here was obtained from algorithm
B. Stubs (in dashed line) signal further descendants not shown in the figure, and the size of the nodes
indicate the total number of descendants.

S3.2 Samples from the hierarchies extracted with the other methods

For comparison with Figs.3-4. in the main paper, here in Figs.S7-S12. we show the corresponding parts
from the hierarchies extracted with algorithm A, the method by P. Heymann & H. Garcia-Molina and
the algorithm by P. Schmitz. Since the overall structure of the hierarchies is varying over the different
algorithms, naturally, the set of tags appearing in these figures is somewhat different compared to Figs.3-
4. in the main paper. I.e., tags in direct ancestor-descendant relation according to algorithm B can
be classified into different branches by an other algorithm or siblings may become unrelated etc. in the
output of another method. Therefore, our strategy when preparing Figs.S7-S12. was to choose the largest
branch, containing the most common tags with Figs.3-4. in the main paper.

In Figs.S7-S9. we show samples corresponding to Fig.3. in the main paper, obtained from the hierar-
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Figure S7. A part of the descendants of “reptile” and “lizard” in the hierarchy between
Flickr tags obtained with algorithm A. Stubs (in dashed line) signal further descendants not
shown in the figure, and the size of the nodes indicate the total number of descendants.

chies extracted for the Flickr tags. Interestingly, in case of algorithm A, (Fig.S7.), the tag “lizard” and
“reptile” are classified into different branches. Meanwhile, in the subgraph obtained from the algorithm
by P. Heymann & H. Garcia-Molina, (Fig.S8), the tag “snake” has been chosen to be the direct ancestor
of “reptile”. Apart from that, the hierarchy of the tags is rather similar to that shown in Fig.3. in the
main paper. In case of the algorithm by P. Schmitz, the obtained result was actually composed of many
distinct small hierarchies, with the tags given in Fig.3. in the main paper spreading over a large number
of different components. Thus, we included a larger set of these small hierarchies in Fig.S9. instead of a
single larger subgraph as in Figs.S7-S8.

In Figs.S10-S12. we show samples from the hierarchies obtained for the IMDDb tags. In case of algorithm
A, (Fig.S10.), we display the branch under “blood”, as most of its descendants appear also on Fig.4 in
the main paper, while the tag “murder” is missing from the figure, since it was sorted into a different
branch. The subgraph shown for the method by P. Heymann & H. Garcia-Molina, (Fig.S11.), has similar
features compared to Fig.4 in the main paper, however, the direct ancestor-descendant relation between
“murder” and “death” has been reversed. Finally, the results for the algorithm by P. Schmitz are again
very dispersed, thus, we included more than one small subgraph in Fig.S12.

S4 Synthetic benchmark

S4.1 Pseudo code

In Algorithm S4. we briefly sketch the pseudo code of the preparation of the synthetic tagged data in
our benchmark system. As explained in the main paper, the basic idea is to use a random walk process
on the pre-defined hierarchy for ensuring the higher frequency of co-occurrences between more closely
related tags. Beside the hierarchy between the tags, the following parameters are also assumed to be
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Figure S8. A part of the descendants of “snake” in the hierarchy between Flickr tags
obtained with the method by P. Heymann & H. Garcia-Molina. Stubs (in dashed line) signal
further descendants not shown in the figure, and the size of the nodes indicate the total number of
descendants.

pre-defined: the number of virtual objects to be generated, the frequency distribution of the tags, the
distribution of the number of tags on the objects and the distribution of the random walk lengths.

S4.2 Further tests based on the “easy” parameter settings

In the main paper we have shown that when the frequency of tags is decreasing linearly as a function of
the depth in the hierarchy, the synthetic benchmark becomes “easy”, and an almost perfect reconstruction
becomes possible. As an illustration, in Fig.S13a-b we show parts from the exact DAGs, (binary trees
of 1023 tags), used for testing algorithm A and algorithm B, respectively. In Fig.S13c we display the
corresponding subgraph from the hierarchy obtained from algorithm A. The result is quite good, where
the majority of the links are exactly matching, (colored green), while the rest are acceptable (shown in
orange). However in case of algorithm B the chosen part of the reconstruction is perfect, as shown in
Fig.S13d, with only exactly matching links.

According to the results discussed in the main paper, when the tag frequencies are independent of
the position in the hierarchy and have a power-law distribution, the benchmark becomes hard. Here we
examine the effect of changes in the other parameters of the benchmark. First, our starting point is the
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Figure S9. Samples from the small hierarchies between Flickr tags obtained with the
algorithm by P. Schmitz. Triangular shaped nodes represent local roots. These were chosen from
tags appearing in Fig.3. in the main paper.

“easy” parameter setting, while the results obtained for the “hard” parameter setting are discussed in
Sect.S4.3. As mentioned in the main paper, the most important feature of the “easy” parameter settings
is that the frequency of the tags is decreasing linearly as a function of the level depth in the hierarchy.
The other parameters were set as follows: an average number of 3 co-occurring tags were generated on
altogether 2,000,000 hypothetical objects, with random walk probability of prw = 0.5 and random walk
lengths chosen from a uniform distribution between 1 and 3, (the results are shown in Table 2. in the
main paper). First we study the effect of changing the length of the random walks. In Table S1. we
show the results when we decrease the random walk length to only a single step: according to the listed
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Figure S10. A part of the descendants of “blood” in the hierarchy between IMDDb tags
obtained with algorithm A. Stubs (in dashed line) signal further descendants not shown in the
figure, and the size of the nodes indicate the total number of descendants.

Algorithm S4 Generating synthetic data based on random walk

1: for all virtual objects do

2 draw tag t; at random according to the tag frequency distribution

3 assign t1 to the virtual object

4 draw number of tags nt at random from the distribution of the number of tags on the objects
5: for all i=2,i <= nr do

6 if random number r < prw then

7 draw random walk length lgw at random from the random walk length distribution

8 set tag t; =t

9 for all j=1, j <= lgw do

10: random walk on the pre-defined hierarchy, ignoring the link directions:
11: new tag t; := random neighbor of t;

12: set t; :tj

13: end for

14: assign t; to the virtual object

15: else

16: draw tag t; at random according to the tag frequency distribution

17: assign t; to the virtual object

18: end if

19: end for

20: end for
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Figure S11. A part of the descendants of “murder” in the hierarchy between IMDDb tags
obtained with the method by P. Heymann & H. Garcia-Molina. Stubs (in dashed line) signal
further descendants not shown in the figure, and the size of the nodes indicate the total number of

descendants.

measures, the quality of the reconstruction for Algorithm B, the method by P. Heymann & H. Garcia-
Molina and the algorithm by P. Schmitz remain exactly or almost exactly the same. In case of Algorithm
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Figure S12. Samples from the small hierarchies between IMDDb tags obtained with the
algorithm by P. Schmitz Triangular shaped nodes represent local roots. These were chosen from
tags appearing in Fig.4. in the main paper.

Table S1. Quality measures of the reconstructed hierarchies with random walk length of 1
step.

rE TA | Ty M I, Iin
algorithm A 63% 9%% | 0% | 5% | 0% 47% | 86%
algorithm B 100% | 100% | 0% | 0% 0% 100% | 100%
P. Heymann & H. Garcia-Molina | 99% | 99% | 1% | 0% | 0% 92% | 99%
P. Schmitz 0% 0% 0% | 0% | 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the “easy” synthetic data set
discussed in the main paper.

A the quality indicators are somewhat lower compared to Table 2. in the main text, however, solely I , is
changed significantly. In Table S2. we show the results when the length of the random walks was chosen
from a uniform distribution between 1 and 5, and the other parameters of the data set were left the same.
Again, algorithm B, the method by P. Heymann & H. Garcia-Molina and the algorithm by P. Schmitz
produce the same (or almost the same) results as presented in Table 2. of the main text. The results
from algorithm A are now better compared to the original settings, reaching almost the same quality as
algorithm A. In conclusion, the change in the length of the random walks has only a negligible effect for
three out of the four methods studied here, and a mild effect on the results from the fourth one.

Next, we examine the effect of reducing the number of generated virtual objects. In Table S3. we show
the results obtained when we generated only 200,000 virtual objects instead of 2,000,000, (and otherwise
used the same parameters as in case of the “easy” synthetic data set). Not surprisingly, the quality of
the methods show a slight decrease, as the hierarchy has to be reconstructed based on less information.
However, the effect is only minor. When reducing the number of objects further down to 50,000, the drop
in the quality measures becomes more pronounced, as presented in Table S4. Interestingly, the algorithm
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Figure S13. Comparison between the exact hierarchy and the reconstructed hierarchy in
case of the “easy” computer generated benchmark. a) A subgraph from the exact hierarchy for
testing algorithm A. b) A subgraph from the exact hierarchy for testing algorithm B. ¢) The subgraph
corresponding to a) in the result obtained from algorithm A. Exactly matching links are shown in
green, acceptable links are colored orange. d) The subgraph corresponding to b) in the result obtained
from algorithm B, showing a perfect match.

Table S2. Quality measures of the reconstructed hierarchies with maximum random walk
length of 5 step.

TE rA | ru M I, Lin
algorithm A 95% | 100% | 0% | 0% 0% 99% | 100%
algorithm B 100% | 100% | 0% | 0% 0% 100% | 100%
P. Heymann & H. Garcia-Molina | 99% | 99% | 0% | 0% | 0% 93% | 99%
P. Schmitz 0% 0% 0% | 0% | 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the “easy” synthetic data set
discussed in the main paper.

by P. Schmitz shows a different behavior, with a slight increase in quality. As mentioned in the main
paper, the study of the reasons for the outlying behavior of this algorithm on the synthetic data is out
of the scope of present work.

Finally, in Table S5. we show the quality measures obtained when the random walk probability was
reduced from prw = 0.5 to prw = 0.1, (and the other parameters were the same as in case of the “easy”
synthetic data set). Similarly to the case of reducing the number of objects, this provides a more difficult
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Table S3. Quality measures of the reconstructed hierarchies with 200,000 hypothetical
objects

{85 TA | TU ™M Iy Lin
algorithm A 67% | 97% | 1% | 2% | 0% 86% | 98%
algorithm B 98% | 98% | 2% | 0% 0% 100% | 100%
P. Heymann & H. Garcia-Molina | 98% | 98% | 2% | 0% | 0% 93% | 99%
P. Schmitz 0% 0% | 0% | 0% | 100% 0% 0%

The setting of the other parameters were exactly the same as in case of the “easy” synthetic data set
discussed in the main paper.

Table S4. Quality measures of the reconstructed hierarchies with 50,000 hypothetical
objects

{§0) TA r1 | ru | ™ | lex | fim
algorithm A 57% | 89% | 3% | 8% | 0% | 75% | 95%
algorithm B 70% | 81% | 13% | 6% | 0% | 76% | 95%
P. Heymann & H. Garcia-Molina | 87% | 91% | 5% | 4% | 0% | 94% | 99%
P. Schmitz 2% 3% 0% | 0% | 97% | 1% | 11%

The setting of the other parameters were exactly the same as in case of the “easy” synthetic data set
discussed in the main paper.

Table S5. Quality measures of the reconstructed hierarchies with random walk probability

PRW = 0.1.
TR TA 7 Ty ™ Iy | in
algorithm A 1% | 61% | 0% | 39% | 0% 0% 1%
algorithm B 89% | 90% | 8% | 2% 0% | 64% | 92%
P. Heymann & H. Garcia-Molina | 88% | 99% | 1% | 0% 0% | 68% | 93%
P. Schmitz 0% | 0% | 0% | 0% | 100% | 0% | 0%

The setting of the other parameters were exactly the same as in case of the “easy” synthetic data set
discussed in the main paper.

task for the tag hierarchy extracting algorithms, as most of the tags are chosen at random on the objects.
Accordingly, the quality measures are decreased when compared to the results shown in Table 2. of the
main text. This effect is quite significant in case of algorithm A, while its less pronounced for algorithm
B and the method by P. Heymann and H. Garcia-Molina.

S4.3 Further tests based on the “hard” parameter settings

In similar fashion to Sect.S4.2, here we examine the effects of changing the parameters when we start
from the “hard” parameter setting. As mentioned in the main paper, the main feature making this choice
of parameters “hard” is that the frequency of tags is independent of the level depth in the hierarchy.
Otherwise, the parameters of the data set discussed in Table 3. of the main text were the following: an
average number of 3 co-occurring tags were generated on altogether 2,000,000 hypothetical objects, with
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random walk probability of prw = 0.5 and random walk lengths chosen from a uniform distribution
between 1 and 3. Starting from this parameter setting, in Table S6. we show the results obtained when
the random walk length is reduced to 1. For all 4 methods, we can observe a slight increase in the quality,
however, no significant changes have occurred when comparing to Table 3. in the main text.

Table S6. Quality measures of the reconstructed hierarchies with random walk length of 1
step.

TR TA 81 Ty ™ | ley | lin
algorithm A 40% | 40% | 17% | 43% | 0% | 21% | 70%
algorithm B 92% | 93% | 5% | 2% | 0% | 84% | 97%
P. Heymann & H. Garcia-Molina | 51% | 55% | 30% | 15% | 0% | 28% | 76%
P. Schmitz 4% | 4% | 0% | 5% | 91% | 2% | 18%

The setting of the other parameters were exactly the same as in case of the “hard” synthetic data
discussed in the main paper.

In Table S7. we show the results when the length of the random walks was chosen from a uniform
distribution between 1 and 5, and the other parameters of the data set were left the same as in case
of Table 3. in the main text. Interestingly, this time the quality measures have been lowered slightly,
nevertheless, no significant change can be observed. In a similar fashion to Sect.S4.2, our conclusion is
that the length of the random walk has no significant effect on the quality of the examined algorithms.

Table S7. Quality measures of the reconstructed hierarchies with maximum random walk
length of 5 step.

TR TA 1 U ™M | lep | Tiin
algorithm A 28% | 36% | 29% | 35% | 0% | 18% | 66%
algorithm B 85% | 88% | 10% | 2% | 0% | 81% | 96%
P. Heymann & H. Garcia-Molina | 46% | 52% | 34% | 14% | 0% | 28% | 76%
P. Schmitz 1% 1% 1% 4% | 94% | 1% 4%

The setting of the other parameters were exactly the same as in case of the “hard” synthetic data set
discussed in the main paper.

We continue our experiments by changing the number of virtual objects in the preparation of the
data set. In Table S8. we show the results obtained when we generated only 200,000 virtual objects
instead of 2,000,000, (and otherwise used the same parameters as in case of the “hard” synthetic data
set). The quality measures for algorithm A, the method by P. Heymann & H. Garcia-Molina and the
algorithm by P. Schmitz remained almost the same, while the marks for algorithm B have been slightly
reduced, (however, algorithm B is still far the best method on this data set). In Table S9. we show the
results obtained when the number of hypothetical objects were further reduced to 50,000. In this case
the quality of algorithm A, the method by P. Heymann & H. Garcia-Molina and the algorithm by P.
Schmitz has slightly dropped, when compared to Table 3. in the main paper. The decrease in the quality
is more pronounced in case of algorithm B, however, its results are still much better than that of the
others. In conclusion, the lowering of the number of virtual objects affects most the result from algorithm
B, nevertheless its quality was always significantly higher compared to the other methods.

Finally, in Table S10. we examine the effects of lowering the random walk probability from pgrw = 0.5
to prw = 0.1,(while keeping the other parameters the same as in case of the “hard” synthetic data set).
As mentioned in Sect.S4.2, this provides a more difficult task for the tag hierarchy extracting algorithms,
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Table S8. Quality measures of the reconstructed hierarchies with 200,000 hypothetical
objects

{85 TA 81 U ™M | lep | Tiin
algorithm A 31% | 36% | 26% | 38% | 0% | 18% | 66%
algorithm B 80% | 86% | 12% | 2% | 0% | 76% | 95%
P. Heymann & H. Garcia-Molina | 48% | 54% | 32% | 14% | 0% | 29% | 76%
P. Schmitz 1% | 2% | 0% | 4% | 94% | 1% | 5%

The setting of the other parameters were exactly the same as in case of the “hard” synthetic data set
discussed in the main paper.

Table S9. Quality measures of the reconstructed hierarchies with 50,000 hypothetical
objects

{§0) TA i Ty M | ley | in
algorithm A 29% | 36% | 26% | 39% | 0% | 17% | 65%
algorithm B 66% | 74% | 20% | 6% 0% | 55% | 89%
P. Heymann & H. Garcia-Molina | 46% | 53% | 33% | 14% | 0% | 28% | 76%
P. Schmitz 1% 2% 0% 5% | 93% | 1% 6%

The setting of the other parameters were exactly the same as in case of the “hard” synthetic data set
discussed in the main paper.

as most of the tags are chosen at random on the objects. Accordingly, the quality measures are decreased
when compared to the results shown in Table 3. of the main text. However, this effect is quite significant in
case of algorithm A, while it is more mild for the method by P. Heymann & H. Garcia-Molina, and is even
less pronounced in case of algorithm B. Our general conclusion regarding the robustness of the examined

Table S10. Quality measures of the reconstructed hierarchies with random walk
probability prw = 0.1.

TE TA T Ty ™ | Ler | Tin
algorithm A 10% | 12% | 14% | 4% | 0% | 5% | 33%
algorithm B 65% | 1% | 21% | 8% | 0% | 61% | 91%
P. Heymann & H. Garcia-Molina | 35% | 36% | 34% | 30% | 0% | 18% | 66%
P. Schmitz 0% | 0% | 0% | 7% | 93% | 0% | 0%

The setting of the other parameters were exactly the same as in case of the “hard” synthetic data set
discussed in the main paper.

algorithms is that no significant differences could be observed in our experiments on the synthetic data
sets. Algorithm B showed more sensitivity to the number of virtual objects compared to algorithm A and
the method by P. Heymann & H. Garcia-Molina. In contrast, when reducing the random walk probability,
algorithm B was found to be more robust compared to the other methods.
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