

Supplemental Figure 1. Phenotypic Comparison of WW Plants and DT Plants.

(A) The photo was taken after the plants were put inside the growth chamber for 18 days. (B) The photo was taken after the plants were put inside the growth chamber for 24 days. (C) The plant to be well-watered which has around 1 cm main stem at day 24. (D) The plant to be treated with drought which has around 1 cm main stem at day 24. (E) At C1/T1, the plants grew over 25 days and had been treated with drought for 1 day. (F) C2/T2. (G) C4/T4. (H) C6/T6. (I) C8/T8. (J) C9/T9. At this

time point, the plants grew over 34 days and had been treated for 10 day. Scale bars for A-J, 3 cm. (**K**)-(**Q**) The floral buds (stage 8-12) and 0-2 flowers from WW plants at C0(**K**). C3(**L**), C5(**M**), C7(**N**), C10(**O**), C12(**P**), and C15(**Q**). (**R**)-(**X**) The floral buds and 0-2 flowers from DT plant at T0(**R**), T3(**S**), T5(**T**), T7(**U**), T10(**V**), T12(**W**), and T15(**X**). Scale bars, 2 mm.

Supplemental Figure 2. Alexander Staining of the Anthers from WW Plants and DT Plants.

(A)-(E) The staining result of anthers collected from WW plants on C0, C3, C5, C7, C9. (F)-(J) The staining result of anthers collected from DT plants on T0, T3, T5, T7, T9. (K)-(N) The *in vitro* germination assay of the pollens from WW plants on C3(K) and C7(M) comparing with those from DT plants on T3(L) and T7(N).

Supplemental Figure 3. Silique Growth was Affected by Drought Stress.

(A) All siliques from a WW plant. The siliques (left to right) were collected one at a time from the bottom to the top of the main inflorescence stem. (B) All siliques from a DT plant main inflorescence, similar to those in (A). (C) All siliques produced from the DT pistil (DPi) pollinated with pollen grains (WP) from WW plants.

Supplemental Figure 4. Correlation between Two Biological Replicates at Each Time Point.

The data for the linear analysis are based on log 2 of the expression data. (**A**) C0 is the inflorescence from the plants grown on well watered condition for 24 days, we use this time point as our start point of the drought treatment; (**B**) C3 is the inflorescence from around 28-day-old plant with well watered condition; (**C**) C4 is the inflorescence from around 29-day-old plant with well watered condition; (**D**) C5 is the inflorescence from around 30-day-old plant with well watered condition; (**E**) C10 is the

inflorescence from around 34-day-old plant with well watered condition; (**F**) T3 is the inflorescence from the 28-day-old plant withholding water for 3 days; (**G**) T4 is the inflorescence from the 29-day-old plant withholding water for 4 days; (**H**) T5 is the inflorescence from the 30-day-old plant withholding water for 5 days; (**I**) T10 is the inflorescence from the 34-day-old plant withholding water for 10 days. R^2 is the square of the correlation coefficient which stands for the Pearson's coefficient between replicates.

Supplemental Figure 5. The Venn Diagram and Enrichment Analysis of Differentially Expressed Genes.

(A) The enrichment analysis of all up-regulated genes with p-values. The reder the filled color is, the more significant the group is. (B) The enrichment analysis of all down-regulated genes with p-values.
(C) The Venn Diagram of up-regulated genes differential expressed at T3 from 3 different comparing groups. (D) The Venn Diagram of down-regulated genes differential expressed at T3 from 3 different comparing groups. (E) The enrichment analysis of the genes combined from a b e groups (98 genes) of up-regulated genes at T3. (F) The enrichment analysis of the genes combined from a b e groups (193 genes) of down-regulated genes at T3.

Supplemental Figure 6. QPCR Verification of Microarray Data.

Supplemental Data. Su et al. (2013). Plant Cell 10.1105/tpc.113.115428

(A) The flowering time related genes. (B) ABC model genes. (C) Anther development genes. (D) Pistil development genes.

Supplemental Figure 7. *cis*-Regulatory Element Analysis of 1 kb and 3 kb Promoters of Differentially Expressed Genes.

(A) *cis*-regluatory element (CRE) analysis within 1000bp promoter of all up-regulated genes. (B) CRE analysis within 1000bp promoter of all down-regulated genes. (C) CRE analysis within 3000bp promoter of all up-regulated transcription factors. (D) CRE analysis within 3000bp promoter of all down-regulated transcription factors.

Supplemental Figure 8. The *dreb1a* T-DNA Mutant Information and *DREB* Genes Expression Pattern under Drought Stress in Flower.

(A) T-DNA insertion of *dreb1a* (CS872453). (B) RT-PCR results of *DREB1A* gene expression in WT and *dreb1a* mutant. (C) The heat map of DREB family genes expression pattern in flower under drought stress. (D) Enrichment analysis of the genes that up-regulated in wild type T3 compared with *dreb1a* T3.

Supplemental Figure 9. Phenotypic Analyses of *dreb1a* Compared with WT under Early Drought Stress.

(A) WT and *dreb1a* plants after 7 days of drought treatment. Bars = 5 cm. (B) *in vitro* germination assay of the pollens from the newly open flowers of WT and *dreb1a* plants at T7. Bars = 500 μ m. (C)

Inflorescence and floral buds phenotype characterization (From C0 to T7). WT inflorescence (left) and *dreb1a* inflorescence (right). The floral buds (stage 8-12) were dissected off with 0-2 open flowers from WW plants (Upper panel) and *dreb1a* (lower panel), Bars = 2 mm.

Supplemental Figure 10. Phenotypic Analyses of *dreb1a* Compared with WT under Prolonged Drought Stress.

(A) Inflorescence and floral buds phenotype characterization (From T9 to T20). WT inflorescence

(left) and *dreb1a* inflorescence (right). The floral buds (stage 8-12) were dissected off with 0-2 open flowers from WW plants (Upper panel) and *dreb1a* (lower panel). Bars = 2 mm. (**B**) Seeds count per silique from most bottom one to the top one.

Supplemental Figure 11. Expression Pattern Change of Key Phytohormone Pathway Genes under Drought Stress.

(A) Auxin pathway gene expression changes under drought. (B) JA pathway gene expression changes under drought. (C) BR pathway gene expression changes under drought. (D) GA pathway gene expression change under drought. (E) MADS-box family Mδ subfamily gene expression changes under drought.

Supplemental Data. Su et al. (2013). Plant Cell 10.1105/tpc.113.115428

Supplemental Table 1. The Number of Genes which Expression Levels Were Above the 50 Threshold (log2 value > 5.64) in Each Dataset and The Number of Genes Which Were Differentially Expressed in Each Dataset Compared with Multiple Controls.

Sample	C0	С3	C4	C5	C10	Т3	T4	T5	T10	
Gene Count	15067	15244	15232	15230	15051	15168	15154	15158	15014	
		T3/C3		T4/C4]	r5/C5	Т	10/C10	
Up-regulated		19		462		1377		1395		
Down-regulated		145	145		101		1230		1567	
	T3/C0	T4/C0	T5/C0	T10/C0	T	C3/C3	T4/C3	T5/C3	T10/C3	
Up-regulated	228	955	1984	1825		19	710	1782	1511	
Down-regulated	222	341	1562	1794		145	384	1555	1682	
	C3/C0	C4/C0		C5/C0	C10/C0	C4	/C3	C5/C3	C10/C3	
Up-regulated	517	469		262	467	20	05	130	216	
Down-regulated	185	218		106	275	2	71	167	398	

Gene ID	Gene Name and Description	T3/C3	Q Value
Transporter activity	*		
AT1G61800	Glucose-6-phosphate/phosphate translocator 2 (GPT2)	2.5	1.34E-05
Transcription factor activity AT4G25480	Dehydration response element binding protein 1a (DREB1A)	1.1	6.65E-03
DNA or RNA binding			
ATCG00660	Ribosomal protein L20 (RPL20)	1.28	1.14E-03
AT1G69260	ABI FIVE binding protein (AFP1)	1.43	2.34E-05
Transferase activity			
AT1G19640	Jasmonic acid carboxyl methyltransferase (JMT)	1.11	7.98E-03
Hydrolase activity			
AT1G07430	Highly ABA-induced PP2C gene (HAI2)	1 74	2.04E-04
AT1G62710	Beta vacuolar processing enzyme (BETA- VPE)	1.28	9.72E-04
Other binding			
AT3G53980	Lipid-transfer protein	1.27	1.18E-05
AT4G33550	Lipid-transfer protein	1.12	1.07E-03
AT5G03350	Legume lectin family protein	1.15	5.18E-03
AT5G55450	Lipid-transfer protein	1.02	8.39E-03
Unknown molecular functions			
AT1G52690	Late embryogenesis abundant 7 (LEA7)	2.03	7.42E-06
AT4G35190	Putative lysine decarboxylase family protein	1.08	5.96E-04
AT5G52310	Cold regulated 78 (COR78);	2.4	1.07E-05
	Low-temperature-induced 78 (LTI78); Responsive to desiccation 29A (RD29A)		
AT5G52390	PAR1 protein	1.44	3.02E-05
AT1G80130	unknown protein	2.15	3.81E-06
AtCG00530	hypothetical protein	1.07	4.89E-04
AT1G19960	Unknown protein	1.76	8.95E-03
Other molecular functions			
ATCG00590	hypothetical protein (ORF31)	1.7	4.56E-03

Supplemental Table 2. GO Annotation of Genes Differentially Expressed at T3 v. C3.

Gene ID	Name	cis element	Gene	T3/C3	Q Value	T4/C4	Q Value	T5/C5	Q Value	T10/C1 0	Q Value
AT4G25480	DREB1A/CBF3	DRE/CRT	RD29A Cor15a	1.10	0.01	-0.14	0.36	0.40	0.05	-0.48	0.01
AT4G25490	DREB1B/CBF1	DRE/CRT	RD29A Cor15a	-0.28	0.56	0.66	0.08	1.32	0.00	1.27	0.00
AT4G25470	DREB1C/CBF2	DRE/CRT	RD29A Cor15a	0.19	0.55	0.23	0.24	0.22	0.14	-0.99	0.00
AT5G51990	DREB1D/CBF4	DRE/CRT	RD29A Cor15a	-0.12	0.60	0.26	0.15	0.80	0.00	0.70	0.00
AT1G12610	DREB1E/DDF1			-0.04	0.69	0.07	0.37	-0.17	0.09	-0.08	0.14
AT1G63030	DREB1F/DDF2			0.08	0.66	0.24	0.17	-0.30	0.05	-0.31	0.02
AT5G05410	DREB2A	DRE	RD29A	-0.28	0.50	1.37	0.00	4.02	0.00	4.57	0.00
AT3G11020	DREB2B	DRE	RD29A	-0.13	0.65	0.23	0.27	0.87	0.00	1.98	0.00

Supplemental Table 3. The Expression of DREB Genes in *Arabidopsis* Flower under Drought Stress.

Gene Name	ne Name AGI		Sequence	Amplicon Size(bp)
ACTIN2	AT3G18780	oMC1533	GGTAACATTGTGCTCAGTGGTGG	108
ACTINZ	AI3018780	oMC1534	AACGACCTTAATCTTCATGCTGC	100
SDI	At/g27330	oMC2362	TCCAACGGTGGTGGATTTTC	200
51 L	At+g27550	oMC2363	TGGTCCCGTATGATTTGTTGC	200
DYT1	At4g21330	oMC1872	ATGGGTGGAGGAAGCAGATTTC	153
	114521550	oMC1834	TTATGGATTGCTTCTCATAACTTC	155
EMS1	At5007280	oMC2364	CTCATCTCCTTCAAGCGCTCA	101
	110501200	oMC2365	AGACACGTAACGCCAACCCA	101
TPD1	At4924972	oMC2366	GGTATCGGCGACACTGCTCT	201
	11.92.1772	oMC2367	CCAATTCTCTCCGGCTCTACA	201
AMS	At2g16910	oMC2368	TTCCCATCTTCCAGCTTCCA	201
		oMC2369	ACCACGTTCTGATCTTCAGCG	-01
AG	AT4G18960	oMC7717	GAGCTCAGGAACTTGGAAGG	145
	1111010700	oMC7718	TCTTTGCACGAAGAATCTGG	1.0
AGL24	AT4G24540	oMC7719	AGTTCTTTGCGATGCTGATG	71
		oMC7720	AGCTGGAGAACTCGAAGAGC	
AP1	AT1G69120	oMC7721	TCTCAACATGGGTGGTCTGT	100
		oMC7722	GCCAAGGTTGCAGTTGTAAA	
AP2	AT4G36920	oMC7723	ACTCAATGCCGAGTCATCAG	81
		oMC7724	GAATTAGCCGAATTTCCCAA	
AP3	AT3G54340	oMC7725	GAGTGTTTGGACGAGCTTGA	125
	AT4G00650	oMC7726	TTCTTGGTGGTCTCGATCTG	
FRI		oMC7727	TGGTTCACGGACAGAGACAT	146
		oMC7728	ACTGCGAGGAGACCTTTGAT	
FT	AT1G65480	oMC7729	CCTTTGGCAATGAGATTGTG	89
		oMC7730	GCCAAGCTGTCGAAACAATA	
LFY	AT5G61850	oMC7731	AGAGCTGAACGGAGACGATT	110
		oMC7732	GCATCAAGAGCGTGATGAGT	
MAF1	AT1G77080	oMC7733	GATCAAGCGAATCGAGAACA	77
		oMC7734	GAGCTTTGTCGATGAGACCA	
PI	AT5G20240	oMC7735	AGCTGCAACAACAGGAGATG	99
		oMC7736	GCTGAATCGGTTGCACTCTA	
SEP1	AT5G15800	oMC7737	TCATATGGGAGGAGGAGGAG	119
		oMC7738	CCATTTGCAGAGTTGGATTG	
SEP2	AT3G02310	oMC7739	GCTTTGTCAATGAAGCTGGA	116
		oMC7740	TGAGAATGAGCCTGAGGATG	
SEP3	AT1G24260	oMC7741	ACTATGGAGCACCAGAACCC	142
		oMC7742	GGTCCAAGATCTTCTCCCAA	
SOC1	AT2G45660	oMC7743	TCAGTGCTTTGTGATGCTGA	133
		oMC7744	TGGTGCTGACTCGATCCTTA	
SVP	AT2G22540	oMC7745	CIGCTGTGTACGAGGAAGGA	116
		oMC7746	ATACGGTAAGCCGAGCCTAA	
BAM1	AT5G65700	oMC7761	GITCGTTTCCCGATGAGATT	87
		oMC7762	CCGGTAAATCTCCGGTTAGA	
BAM2	AT3G49670	oMC7763	GTICAATACCGGATTCGCTT	95
		oMC7764	GAAGAGCTCCTTTGGAATCG	
BAM3	AT4G17090	oMC7765	TCTCAGGCAAGTTTCCTCCT	97

Supplemental Table 4. Primers for QPCR.

		oMC7766	ATCTGAACCGGAATCTGACC		
ERECTA	AT2G26330	oMC7767	TCACGGCTCACTGAGAAATC	147	
		oMC7768	TGCCATTTCCATCACTTCAT	147	
MVD110	AT3G29020	oMC7769	ACTCAACCTTCCCTGCAGAT	09	
MIBIIO		oMC7770	TGTTGATGATGATGGCAGTG	90	
MVP33	AT5G06100	oMC7771	TATCAAGAGGCGACAACGAG	74	
WI1B55		oMC7772	GACTCCACTCAAGTGCCTCA	74	
MVR65	AT3G11440	oMC7773	CATCGCAGGTAGAGGAGTCA	100	
WIT B05		oMC7774	ATCAACAAACTGTGCTTCGC	109	
MVR00	AT5G62320	oMC7775	ATCGTCGATTTGACCAACAA	112	
WI I D99		oMC7776	TGCTGACGTGTCATTCTTCA	115	
SEDV1	AT1G71830	oMC7777	TGGGTGAAAGGATTGTTGAA	1/3	
SERKI		oMC7778	TTTGGTCTTTCCATTGGTGA	145	
AGI 23	AT1G65360	oMC7747	TGATGTTCTGCTTGACCACTT	130	
AGE25		oMC7748	TTCTACTTCCGCCTTCACCT	150	
AGL80	AT5G48670	oMC7749	TCTCGACTCTTTGTGGCATC	81	
- AGE00		oMC7750	AATTTGATGGCCACACTTCA	01	
FOSTRE	AT2G35940	oMC7751	TGGTGATCTCTTCGTTCGAG	103	
LODINE		oMC7752	TCTTTCAAGCAACGGAACTG	105	
GPT1	AT5G54800	oMC7753	GGACCACAGTTTGTCTGGTG	133	
0111		A13034000	oMC7754	CGGAGATACGTTTCATGGTG	155
MYB98	AT4G18770	AT/G18770	oMC7755	AGTGTTACCGGGAAGAATCG	147
WI I D70		oMC7756	ATCTCTGCCCATTTGTTTCC	147	
RHF1a	AT4G14220	oMC7757	AAGGAGTGCAACGTGAGATG	121	
KIII ⁻ 1a		oMC7758	GCAGTAGCAGTGGAGGTTGA	121	
RHF2a	AT5G22000	oMC7759	CAGCCACCAACTTCTTCTCA	69	
KIII ⁻ 2a		oMC7760	AAGAGGCCTGCTGTTTGAAT	07	