

Supplemental Figure 1. Mutation in *NLA* Causes Increased Pi Uptake Activity and PHT1 Protein Amounts.

(A) Shoot morphology of 19-day-old *nla* mutants under Pi-sufficient conditions.

(B) [³³P]Pi uptake activity of 19-day-old WT and *nla* mutants. N = 8; error bar = SEM; Student's *t* test, mutants versus WT, ***, P < 0.005. FW, fresh weight; h, hour. **(C)** Protein expression of PHT1;1/2/3, PHT1;4 and PHF1 in the roots of WT and *nla* mutants under Pi-sufficient (+Pi) and -deficient conditions (-Pi).

Supplemental Figure 2. The Responses of WT and *nla-2* Mutants after Recovery from Pi Deprivation.
(A) Shoot morphology of the WT and *nla-2* mutants under Pi-sufficient conditions (right) or after recovery from 4-day Pi deprivation (left). Severe necrosis at leaf edges appeared in the mutants after recovery for 3 days.
(B) Expression of *PHT1;1, PHT1;2, PHT1;3* and *PHT1;4* in the roots of WT and *nla-2* mutants after Pi replenishment. There was no significant difference in mRNA level between the WT and *nla* mutants. N = 3; error bar = SEM.

(C) Expression of primary miR827 (pri-miR827) in the WT after Pi replenishment. N = 3; error bar = SEM.

(A) Subcellular localization of GFP-NLA or NLA-GFP in Arabidopsis mesophyll protoplasts. Bar = 20 µm.

(B) Colocalization of CFP-NLA with FM4-64 at the PM after staining for 15 minutes. Bar = 10 μ m.

(C) Subcellular localization of GFP-NLA in 3 independent *nla-2* lines (12-day-old) overexpressing GFP-NLA. Bar = 20 µm.

(D) Pi content of overexpressing GFP-NLA in 12-day-old *nla-2* mutants grown in high Pi medium. N = 3; error bar = SEM; Student's *t* test, *nla-2* mutants versus WT, ***, P < 0.005; overexpressing lines versus *nla-2*, +, P < 0.05; +++, P < 0.005. FW, fresh weight.

(E) NLA proteins were detected only in the membrane protein fraction and not in the soluble protein fraction. PIP1, cFBPase and PHF1 were used as markers for PM proteins, cytosolic proteins and ER proteins, respectively.

Supplemental Figure 4. Expression Pattern of NLA and MIR827.

GUS staining of roots of 12-day-old seedlings for examining the expression pattern of *NLA* (**A**) and *MIR827* (**B**). The cross sections of roots were from the areas marked with arrowheads in the left panels.

Expression pattern of *NLA* and *MIR827* in shoots are shown in **(C)** and **(D)**, respectively. Bar = $50 \mu m$. Six independent transgenic lines of each construct were examined. Representative lines are shown.

Supplemental Figure 6. The N-terminal Portion of PHT1;1 Is Sufficient for NLA-Mediated Degradation.

(A) None of the mutated PHT1;1 proteins (PHT1;1^{K524A}, PHT1;1^{K276/279A}, PHT1;1^{K276/279/524A}) were resistant to NLA-mediated degradation when coexpressed with NLA in tobacco leaves.

(B) Coexpression of N- (PHT1;1^{N1-294}) or C- (PHT1;1^{C234-524}) terminal portion of PHT1;1 with NLA or NLA^{C279A} in tobacco leaves. PHT1;1^{N1-294} was degraded by NLA but not by NLA^{C279A}. The signal of PHT1;1^{C234-524} was too weak to be conclusive.

Microsomal proteins were used for this experiment. PHT1;1 and its mutated and truncated forms were detected by anti-PHT1;1/2/3 antibodies. Co-infiltration of 35S::GFP construct was used as an internal control. Note that "+++" and "++" denotes 5- and 2.5-fold increases in volume of infiltration relative to "+", respectively.

Supplemental Figure 7. NLA-Mediated Ubiquitination Triggers PHT1;1 Sorting into the Vacuole through the Endosomal Trafficking Pathway.

The effect of E-64d treatment on PHT1;1-YFP trafficking in two additional independent transgenic lines, #6 and #8 in the WT background **(A)** and #14 and #16 in *nla-2* mutants **(B)**. The "merge" panel is an overlaid image of YFP, FM4-64 and bright field. The aggregation of PHT1;1-YFP in the WT **(A)** is indicated by arrowheads. Bar = 20 μ m.

Supplemental Figure 8. Subcellular localization of Os-NLA1. Subcellular localization of CFP-OsNLA1 **(A)** and OsNLA1-CFP **(B)** in tobacco leaves. The "merge" panel is an overlaid image of CFP and bright field. Bar = $20 \ \mu m$.

Supplemental Figure 9. The Difference between NLA- and PHO2-Dependent Regulation of PHT1s.

(A)The leaf phenotype of 19-day-old *nla pho2* double and respective single mutants. The necrosis (arrowhead) was clearly observed at the leaf edge of double mutants.

The Pi content **(B)** and protein expression of PHT1;1/2/3, PHT1;4 and PHF1 **(C)** in *nla-1 pho2* double and the respective single mutants. N = 3; error bar = SEM. Student's *t* test, single mutants versus WT, *, P < 0.05 ; **, P < 0.01 ; ***, P < 0.005; *nla-1 pho2* versus *pho2*, $^+$,P < 0.05. FW, fresh weight. The detection of ARF1 was used as a loading control.

(D) Immunoblot analysis of PHT1;1/2/3 and PHT1;4 in 10-day-old mutants and the corresponding WT. The detection of ARF1 was used as a loading control.

(E) The mRNA expression of *NLA* in 19-day-old WT and *pho2* plants. There was no significant difference of *NLA* expression between WT and *pho2* mutants. N = 3; error bar = SEM.

(F) Expression of mature miR827 and miR399 in the roots of 19-day-old WT and pho2 plants.

(G) The Pi content of *nla-1* and *pho2* mutants during plant growth. N = 3, error bar = SEM. Student's *t* test, single mutants versus WT, *, P < 0.05; ***, P < 0.005. FW, fresh weight.

Gene	Primer	Sequence (5'→3')
AT1G02860	Forward	CTTTTTTTGTTTGAGGGCTGAAT
NLA	Reverse	TCATTTATTTTTCTCTGAATTTCACAAC
AT2G33770	Forward	AGGTTTGAAGCTCCACCCTCA
PHO2	Reverse	CCCAAGATGTGATTGGAGTTCC
AT2G38940	Forward	GGTCCCAATAGTTTAGGTGAT
PHT1;4	Reverse	AGTTGCTAGAGACAAGGAGAA
AT3G59884	Forward	CCACGAAAGAGTTTGTTGATGGT
MIR827	Reverse	TCCTTGTGTTGATCGATTGGTT
AT5G43350	Forward	GCCATGACGAGAAATAATTATGT
PHT1;1	Reverse	TAACTTAAGGTCAACGAGCCAAT
AT5G43360	Forward	CGAGGCTGAGGTTGATAAATGAT
PHT1;3	Reverse	CACACATCGCAAAACCAATGAC
AT5G43370	Forward	AGCCATCATTGGAGCCTTC
PHT1;2	Reverse	ACCTTAGCCTTGTCTTGATT
AT4G05320	Forward	GGCCTTGTATAATCCCTGATGAATAAG
UBQ10	Reverse	AAAGAGATAACAGGAACGGAAACATAGT

Construct	Primer	Sequence (5'→3')				
35S::NLA	Forward	AGCTCCATGAAGTTTTGTAAGAAGT				
35S::GFP-NLA						
35S::CFP-NLA	Reverse	ACCTCGAACTATATCATATTCCAGT				
35S::NLA-GFP	Forward	AGCTCCATGAAGTTTTGTAAGAAGT				
35S::NLA-CFP	Reverse	TATTCCAGTGAAGCTTCGGCA				
35S::NLA ^{C279A}	Forward	GCCCGTGAGGATGGGGTTTATAAAGGTGC				
35S::CFP-NLA ^{C279A}	Reverse	AAGCGGGCATTTTTCAGTTGCTTCTGCG				
SEQUOED NU ASPX	Forward	AGCTCCATGAAGTTTTGTAAGAAGT				
35S::CFP-NLA ^{SPA}	Reverse	TCAAGAGAGCTCGCAGGAAAG				
35S::NLA ^{SPX} -CFP	Forward	AGCTCCATGAAGTTTTGTAAGAAGT				
UBQ _{pro} ::NLA ^{SPX} -nYFP	Reverse	AGAGAGCTCGCAGGAAAG				
	Forward	ATGAAAATGCGAATAGAAATC				
355CFP-NLANNO	Reverse	ACCTCGAACTATATCATATTCCAGT				
35S:: NLA ^{RING} -CFP	Forward	ATGAAAATGCGAATAGAAATC				
	Reverse	TATTCCAGTGAAGCTTCGGCA				
35S::PHT1;1	Forward	ATGGCCGAACAACAACTAGGAGT				
	Reverse	TTATTTCTCGTCATGGCTAACCTC				
UBQ _{pro} ::PHT1;1-cYFP	Forward	ATGGCCGAACAACAACTAGGAGT				
	Reverse	TTTCTCGTCATGGCTAACCTCA				
PHT1;1 _{pro} ::PHT1;1-YFP	Pro-for	CCCGGGTCTAGGGACGTCCAAGTTCACTGAAT				
	D 2	CACAGCTCCACCTCCAGGCCGGCCAGAGAGTTCTTCAAGGGACTT				
	PZ	GCCT				
	FP-for	GGCCGGCCTGGAGGTGGAGGTGGAGCTGTGAGCA				
	FP-rev	GGCCCCAGCGGCCGCAGCAGCACCAGCAGGATC				
	P3	TGCTGGTGCTGCGGCCGCTGGGGCCGGTGAGGCTGAGGTTAGCCATG				
	P4	CGAAATATTAGACAAGATTTAAATGATATC				

Construct	Primer	Sequence (5'→3')			
	P1	ATGGCCGAACAACTAGGAGT			
		CACAGCTCCACCTCCAGGCCGGCCAGAGAGTTCTTCAAGGGACTT			
	P2	GCCT			
35S::PHT1;1-YFP	FP-for	GGCCGGCCTGGAGGTGGAGGTGGAGCTGTGAGCA			
	FP-rev	GGCCCCAGCGGCCGCAGCAGCACCAGCAGGATC			
	P3	TGCTGGTGCTGCGGCCGCTGGGGCCGGTGAGGCTGAGGTTAGCCATG			
	P4	CGAAATATTAGACAAGATTTAAATGATATC			
35S::PHT1;4	Forward	ATGGCAAGGGAACAATTACAAGTG			
	Reverse	CTAAACTATTGGGACCGTTCTACTATCA			
	Forward	ATGGCAAGGGAACAATTACAAGTG			
UBQ _{pro} ::PH11;4-CYFP	Reverse	AACTATTGGGACCGTTCTACTATCATT			
	P1	ATGGCAAGGGAACAATTACAAGTG			
	22	CACAGCTCCACCTCCAGGCCGGCCGCTATTCTCATTGTCTTCATTTT			
	P2	CACC			
35S::PHT1;4-YFP	FP-for	GGCCGGCCTGGAGGTGGAGGTGGAGCTGTGAGCA			
	FP-rev	GGCCCCAGCGGCCGCAGCAGCACCAGCAGGATC			
	P3	TGCTGGTGCTGCGGCCGCTGGGGCCAACAATGATAGTAGAACGGTCCC			
	P4	GGTCAATTACGAAGGAGAGCCTTCTACTT			
250	Forward	ATGGCCGAACAACAACTAGGAGT			
35S::PH11;1-HA	Reverse	TTAAGCGTAATCTGGAACATCGTATGGGTATTTCTCGTCATGGCTAAC			
	Forward	GCATACCCATACGATGTTCCAGATTACGCT			
355 <i>РПТТ,Т^{ке}т</i> -ПА	Reverse	CTCGTCATGGCTAACCTCAGCCTCAC			
35S::PHT1;1 ^{к276/279А} -НА	Forward	GACCCCGCACAAAACTATGGCTTGTTCTCC			
35S::PHT1;1 ^{K276/279/524A} -HA	Reverse	TGCGACGTCATCCTCCACCCTTTCCTCAAG			
35S::OsNLA1	Forward	ATGAAGTTTGCCAAGAAGTAC			
35S::CFP-OsNLA1	Reverse	TCACATGCCCAAGAATGCC			
35S::OSNLA1-CFP	Forward	ATGAAGTTTGCCAAGAAGTAC			
	Reverse	CATGCCCAAGAATGCCCTG			
	Forward	ATGGCTTCAAATTCAGCAC			
UBQ _{pro} ::IRT1-CYFP	Reverse	GCGGCCGCTTAAGCCCATTTGGCGATAA			
MID007	Forward	CACTATGTTAAACTCAGCTT			
MIR827 _{pro} ::GUS	Reverse	ACCTATAACGTTTCATGGAAGT			
NLA _{pro} ::GUS	Forward	AGCCAAATAGGTATTAGTCT			
	Reverse	GAACATATCTTCTTCGT			
pDL-Nub-NLA ^{SPX}	Forward	CGCTGGATCCATGAAGTTTTGTAAGAAGT			
	Reverse	TCAAGAGAGCTCGCAGGAAAG			
pTMBV4-PHT1;4-Cub	Forward	ACATCTAGAATGGCAAGGGAACAATTAC			
	Reverse	TATGTCTAGAAACTATTGGGACCGTTCTAC			

Supplemental Table 1. Sequence of Primers used in This Study (Continued)

Purpose	Construct	Plasmid backbone	Insert or PCR product	Template used for cloning	Cloning method
promoter::reporter assay	NLA _{pro} ::GUS	pMDC164 ¹	2.2 kb upstream genomic sequence of NLA from start codon	Arabidopsis genomic DNA	Gateway LR
	MIR827 _{pro} ::GUS	pMDC164 ¹	1.3 kb upstream genomic sequence of MIR827 from stem loop	Arabidopsis genomic DNA	Gateway LR
	35S::PHT1;1	pMDC321	PHT1;1 CDS	TOPO-PHT1;1 CDS	Gateway LR
	35S::PHT1;4	pMDC321	PHT1;4 CDS	TOPO-PHT1;4 CDS	Gateway LR
	35S::NLA	pMDC321	NLA CDS	Arabidopsis cDNA	Gateway LR
overexpression	35S::NLA ^{C279A}	pMDC32 ¹	NLA ^{C279A} CDS	TOPO-NLA CDS	site-directed mutagenesis/ Gateway LR
	35S::OsNLA1	pMDC321	OS-NLA1 CDS	rice cDNA	Gateway LR
	35S::PHT1;1-HA	pMDC321	PHT1;1-HA	TOPO-PHT1;1 CDS	Gateway LR
HA-tagged PHT1;1 and point- mutated PHT1;1	35S::PHT1;1 ^{K524A} -HA	pMDC32 ¹	PHT1;1 ^{K524A} -HA	TOPO-PHT1;1-HA	site-directed mutagenesis/ Gateway LR
	35S::PHT1;1 ^{K276/279A} -HA	pMDC321	PHT1;1 ^{K276/279A} -HA	TOPO-PHT1;1-HA	site-directed mutagenesis/ Gateway LR
	35S::PHT1;1 ^{K276/279/524A} -HA	pMDC321	PHT1;1 ^{K276/279/524A} -HA	TOPO-PHT1;1 ^{K276/279A} HA	site-directed mutagenesis/ Gateway LR
	PHT1;1 _{pro} ::PHT1;1-YFP	pMDC991	PHT1;1 genomic DNA &YFP	Arabidopsis genomic DNA and pK7WGY2	three piece PCR ⁴ /Gateway LR
	35S::PHT1;1-YFP	pMDC32 ¹	PHT1;1 CDS &YFP	TOPO-PHT1;1 CDS and pK7WGY2	three piece PCR ⁴ /Gateway LR
	35S::PHT1;4-YFP	pMDC321	PHT1;4 CDS &YFP	TOPO-PHT1;4 CDS and pK7WGY2	three piece PCR ⁴ /Gateway LR
	35S::GFP-NLA	pK7WGF2 ²	NLA CDS	TOPO-NLA CDS	Gateway LR
	35S::NLA-GFP	pMDC831	NLA CDS	TOPO-NLA CDS	Gateway LR
fluorescent	35S::CFP-NLA	pK7WGC2 ²	NLA CDS	TOPO-NLA CDS	Gateway LR
protein-tagged fusion protein	35S::CFP-NLA ^{C279A}	pK7WGC2 ²	NLA ^{C279A} CDS	TOPO-NLA CDS	site-directed mutagenesis/ Gateway LR
	35S::NLA-CFP	pK7CWG2 ²	NLA CDS	TOPO-NLA CDS	Gateway LR
	35S::CFP-NLA ^{SPX}	pK7WGC2 ²	NLA ¹⁻²²⁰ CDS	TOPO-NLA ^{SPX}	Gateway LR
	35S::CFP-NLA ^{RING}	pK7WGC2 ²	NLA ¹⁵⁸⁻³³⁵ CDS	TOPO-NLA ^{RING}	Gateway LR
	35S::CFP-OsNLA1	pK7WGC2 ²	Os-NLA1 CDS	TOPO-OsNLA1 CDS	Gateway LR
	35S::OsNLA1-CFP	pK7CWG2 ²	Os-NLA1 CDS	TOPO-OsNLA1 CDS	Gateway LR
	UBQ _{pro} ::NLA-nYFP	pUBC-nYFP ³	NLA CDS	TOPO-NLA CDS	Gateway LR
	UBQ _{pro} ::NLA ^{SPX} -nYFP	pUBC-nYFP ³	NLA ¹⁻²²⁰ CDS	TOPO-NLA ^{SPX}	Gateway LR
bimolecular fluorescence complementation (BiFC)	UBQpro::PHT1;1-cYFP	pUBC-cYFP ³	PHT1;1 CDS	TOPO-PHT1;1 CDS	Gateway LR
	UBQ _{pro} ::PHT1;4-cYFP	pUBC-cYFP ³	PHT1;4 CDS	TOPO-PHT1;4 CDS	Gateway LR
	UBQ _{pro} ::CHL1-cYFP	pUBC-cYFP ³	CHL1 CDS	pENTRTM/D-TOPO- CHL1	Gateway LR
	UBQ _{pro} ::IRT1-cYFP	pUBC-cYFP ³	IRT1 CDS	pDL-NubG-IRT1 (Shin et al., 2013)	Gateway LR
split-ubiquitin yeast-two-hybrid	pTMBV4-PHT1;4	pTMBV4	PHT1;4 CDS	TOPO-PHT1;4 CDS	Xbal
	pDL-NubG-NLA ^{SPX}	pDL-NX2	NLA ¹⁻²²⁰ CDS	TOPO-NLA ^{SPX}	BamHI/Smal

Supplemental Table 2. Constructs

¹ Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. **133**: 462-469.

² Karimi, M., Inzé, D., and Depicker, A. (2002). GATEWAY[™] vectors for *Agrobacterium*-mediated plant transformation. Trends Plant Sci. **7**: 193-195.

³ Grefen, C., Donald, N., Hashimoto, K., Kudla, J., Schumacher, K., and Blatt, M.R. (2010). A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. **64**: 355-365.

⁴ Tian, G.-W., Mohanty, A., Chary, S.N., Li, S., Paap, B., Drakakaki, G., Kopec, C.D., Li, J., Ehrhardt, D., Jackson, D., Rhee, S.Y., Raikhel, N.V., and Citovsky, V. (2004). High-Throughput Fluorescent Tagging of Full-Length Arabidopsis Gene Products in Planta. Plant Physiol. **135**: 25-38.

⁵ Shin, L.J., Lo, J.C., Chen, G.H., Callis, J., Fu, H., and Yeh, K.C. (2013). IRT1 DEGRADATION FACTOR1, a RING E3 12 Ubiquitin Ligase, Regulates the Degradation of IRON-REGULATED TRANSPORTER1 in Arabidopsis. Plant Cell. PMID: 23995086