Additional File 1

Fermentation stage-dependent adaptations of *Bacillus licheniformis* during enzyme production

Sandra Wiegand, Birgit Voigt, Dirk Albrecht, Johannes Bongaerts, Stefan Evers,

Michael Hecker, Rolf Daniel and Heiko Liesegang

Content

Figure S1 Protease production and process parameters	2
Figure S2 Proteome of the amino acid metabolism – Part I	3
Figure S3 Proteome of the amino acid metabolism – Part II.	4
Figure S4 Amino acid transport.	5
Figure S5 Proteome of the central carbon metabolism.	7
Figure S6 Carbohydrate transport	8
Figure S7 Acetoin utilization operon <i>acuABC</i>	10
Figure S8 Most abundant proteins.	10
Figure S9 Lichenicidin gene cluster	11
Figure S10 Cell envelope stress response.	12
Figure S11 Sporulation.	14
Figure S12 Iron starvation	22
Figure S13 Heat shock response.	23
Figure S14 Phosphate starvation response	24
Figure S15 Putative Tat signal peptide of Subtilisin Carlsberg.	25
References	26

Figure S1 Protease production and process parameters. Process parameters are shown for fermentations R and M (please refer to Figure 1 for replicate L). Oxygen partial pressure pO₂ [%], glucose concentration c_{Glucose} [g/L], supplied glucose feed_{Glucose} [g/L] and normalized protease activity [%] are displayed on the left yaxis, whereas acetate concentration cAcetate [g/L] (only for fermentation R), carbon dioxide content CO2 [%], and ammonium concentration c_{NH4+} [g/10L] (only for fermentation R) are scaled on the right y-axis. Process time t [h] is given on the x-axis. The sampling points I to V are indicated by light blue lines.

Figure S2 Proteome of the amino acid metabolism – **Part I.** Heat map representation of Z-score transformed protein spot volumes of proteins involved in amino acid transport and metabolism. In cases where a specific protein is assigned to more than one spot, the particular spots are indicated by an underscore, followed by an ordering letter. Statistically not significant values are indicated by light grey boxes. Pyr: Pyruvate. For the corresponding transcriptome data please refer to Figure 5.

Figure S3 Proteome of the amino acid metabolism – **Part II.** Heat map representation of Z-score transformed protein spot volumes of proteins involved in amino acid metabolism. In cases where a specific protein is assigned to more than one spot, the particular spots are indicated by an underscore followed, by an ordering letter. Statistically not significant values are indicated by light grey boxes. Yellow frames indicate reactions with multiple assigned enzymes of which only one is strictly necessary. Pyr: Pyruvate, Oxo: 2-Oxoglutarate. For the corresponding transcriptome data please refer to Figure 6.

Figure S4 Amino acid transport. Heat map representation of Z-score transformed NPKM values. The depicted genes have been annotated as **(A)** amino acid or nitrogen transporters and **(B)** amino acid ABC transporter components. Please note that the figure does not give a complete list of genes involved in amino acid transport. Genes with an assigned antisense RNA [1] are marked in blue, asterisks indicate a detected protein spot for the respective gene (Additional File 2: Table S3) and statistically not significant values are marked by grey boxes. Transporter genes with high transcript abundances during the early stages of the fermentation process are for example encoding a tryptophan transporter (trp), cystine (tcyABC) and methionine (metNPQ) ABC transporters and diverse proteins for uptake of alanine or unspecific amino acids. Additionally, the transcript of the ammonium transporter NrgA, especially required for ammonium transport at low ammonium concentrations in *B. subtilis* [2], is highly abundant at sampling point I. The only operon besides the dipeptide ABC transporters mentioned in the main text with distinct transcript abundance at the later sampling points encodes a high-affinity arginine ABC transporter (artPQR).

Figure S5 Proteome of the central carbon metabolism. Heat map representation of Z-score transformed protein spot volumes of proteins involved in central carbon metabolism. In cases where a specific protein is assigned to more than one spot, the particular spots are indicated by an ordering letter. Statistically not significant values are indicated by light grey boxes. For the corresponding transcriptome data please refer to Figure 7.

00444	multiple monosaccharide ABC transporter membrane protein
00442	monosaccharide ABC transporter substrate-binding protein
00443	multiple monosaccharide ABC transporter ATP-binding protein
ytcQ1	carbohydrate ABC transporter substrate-binding protein
nsmX	carbohydrate ABC transporter ATP-binding protein
amyD	carbohydrate ABC transporter permease
nsmE	carbohydrate ABC transporter substrate-binding protein
amyC	carbohydrate ABC transporter permease
ganQ	carbohydrate ABC transporter permease
ganP	carbohydrate ABC transporter permease
сусВ	carbohydrate ABC transporter ATP-binding protein

Figure S6 Carbohydrate transport. Heat map representation of Z-score transformed NPKM values. The depicted genes have been annotated as **(A)** carbohydrate ABC transporter components, **(B)** phosphotransferase system EII components and **(C)** further carbohydrate transporters. Please note that the figure does not give a complete list of genes involved in carbohydrate transport. Genes with an assigned antisense RNA [1] are marked in blue, asterisks indicate a detected protein spot for the respective gene (Additional File 2: Table S3) and statistically not significant values are marked by grey boxes.

At sampling point II, the transcript abundances indicate the consumption of the previously synthesized acetate (Figure 7). These results are supported by RNA abundance shifts of associated transporters. The transcript of a tripartite ATP-independent periplasmic dicarboxylate transporter (TRAP) of the TAXI type (BLi02556 and BLi02558), which is suggested as capable of acetate transport [3], is highly abundant.

During the late production stages, transcripts of transporters of diverse sugars (GlcP, XynP, BglP, SdcS) and cell wall components (MurP, NagP) are abundant. It is likely that this reaction can be accounted to the availability of such compounds due to cell lysis, as for example described at the onset of sporulation in *B. subtilis* [4], or shear effects in the fermenter.

Figure S7 Acetoin utilization operon *acuABC***.** Heat map representation of Z-score transformed NPKM values. The depicted genes are annotated as acetoin utilization operon *acuABC*.

Figure S8 Most abundant proteins. Mean spot volumes of the most abundant proteins are plotted against sampling points (see also Additional File 2: Table S3). Grey lines represent protein spot volumes either higher than 0.8% at one sampling point or higher than 0.5% at all sampling points. Lines colored green, red and orange indicate the three most abundant protein spots Eno, Tu and SodA_a. In case a specific protein can be assigned to more than one spot, the particular spot is indicated by an ordering letter. Please note that statistically not significant values are not shown.

Highly abundant transcripts (Figure 2) for which predominant proteins could also be observed are coding for SodA, Tu and SpoVG. Other strongly synthesized proteins are, for example, the enolase Eno and proteins involved in carbon and amino acid metabolism or cofactor synthesis. They also comprise peptidases, the heat shock proteins GroES and DnaK and elongation factor G. Protein spots corresponding to the strongly transcribed genes *lanA1* and *lanA2* could not be identified. This was expected, as these proteins are probably exported by ABC transporters [5] and thus cannot be detected by proteome analysis of cytoplasmic proteins. The findings of highly abundant proteins match the results for *B. licheniformis* shown by Voigt et al. [6]. The only major exception is the absence of the flagellin protein Hag, which is also not highly abundant on transcript level. This effect is due to repression of *hag* gene expression in the presence of amino acids [7].

Figure S9 Lichenicidin gene cluster. Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as two-peptide lantibiotic lichenicidin-processing gene cluster Lan in *B. licheniformis* [5, 8]. Genes with an assigned antisense RNA [1] are marked in blue.

Figure S10 Cell envelope stress response. Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as marker genes for the *B. licheniformis* cell envelope stress response by Wecke et al. [9]. Genes with an assigned antisense RNA [1] are marked in blue, asterisks indicate a detected protein spot for the respective gene (Additional File 2: Table S3) and statistically not significant values are marked by grey boxes. The genes *yvnB*, *sigY*, *pbpX* and *yxlCDEFG* are not shown due to lacking transcript abundances (NPKM values <10).

	yhdB
	spoIIID
	ypfB
	spoIVA
	spoVD
	yyaC
	yqfC
	spollIAG
	yabT
	yqfD
	yabS
	yozD
	yqxA
	yngHB
	yhxC
	yaaH
	yhaL
	spoIIIAH
	yodQ
	yuzC
	ydcC
	yngE
	ysxE
	sqhC
	ymfJ
	spollP
	prkA
	spollGA
	yqhO
	ytfl
	spollSA
	spoVAC
	yhaX
	spollIAF
	glgA
	BLi03524
	kamA
	yhcN
	yhcV
	yngG
	yteV
	ykzD
	yjbA
	BLi01360
	spollIAC
	sspA
	yngJ

yhdB	hypothetical protein
ooIIID	stage III sporulation protein
ypfB	hypothetical protein
ooIVA	stage IV sporulation protein
poVD	stage V sporulation protein
yyaC	sporulation protein
yqfC	sporulation protein
oIIIAG	stage III sporulation protein
yabT	putative serine/threonine-protein kinase
yqfD	SigE-dependent sporulation gene
yabS	hypothetical protein
yozD	hypothetical protein
yqxA	hypothetical protein
ngHB	biotin/lipoyl attachment protein
yhxC	putative oxidoreductase
yaaH	glycoside hydrolase family protein
yhaL	hypothetical protein
JIIAH	stage III sporulation protein
yodQ	4-acetamidobutyryl-CoA deacetylase
yuzC	sporulation protein
ydcC	putative sporulation protein
yngE	methylcrotonoyl-CoA carboxylase
ysxE	positive modulator
sqhC	squalenehopene cyclase
ymfJ	hypothetical protein
pollP	cell wall hydrolase
prkA	serine protein kinase
ollGA	sigma-E factor-processing peptidase
yqhO	putative acyl hydrolase/lysophospholipase
ytfl	DUF2953 family protein
ollSA	stage II sporulation protein
oVAC	stage V sporulation protein
yhaX	hypothetical protein
oIIIAF	stage III sporulation protein
glgA	glycogen synthase
03524	putative small acid-soluble spore protein
kamA	L-lysine 2,3-aminomutase
yhcN	forespore-specific protein
yhcV	CBS domain protein
yngG	3-hydroxy-3-methylglutaryl-coenzyme A lyase
yteV	sporulation protein
ykzD	hypothetical protein
yjbA	hypothetical protein
01360	hypothetical protein
oIIIAC	stage III sporulation protein
sspA	small acid-soluble spore protein
yngJ	putative acyl-CoA dehydrogenase

sspO	small acid-soluble spore protein
katX	catalase
sspl	small acid-soluble spore protein
BLi02230	hypothetical protein
sspP	small acid-soluble spore protein
BLi01951	hypothetical protein
yisY	AB hydrolase superfamily protein
yjbE	membrane protein
yngF	short chain enoyl-CoA hydratase
glgD	glycogen biosynthesis protein
spollQ	stage II sporulation protein
spoIVB	peptidase S
yqhR	hypothetical protein
yuzA	general stress protein
rsfA	putative transcriptional regulator
yqgO	hypothetical protein
yheD	hypothetical protein
yhcQ	hypothetical protein
yhbH	sporulation protein
yndM	hypothetical protein
yqhG	hypothetical protein
ywcB	DUF485 transmembrane protein
yrrD	forespore-specific sporulation protein
alr2	alanine racemase
azoR2	FMN-dependent NADH-azoreductase
cotO	spore coat morphogenetic protein
sspB	small acid-soluble spore protein
yqhV	hypothetical protein
sodF	putative superoxide dismutase
gerR	putative transcriptional regulator
yhfN	putative metalloprotease
yjaV	hypothetical protein
BLi00840	hypothetical protein
yhfW	putative Rieske 2Fe-2S iron-sulfur protein
dacF	D-alanyl-D-alanine carboxypeptidase
yrzE	transmembrane protein
accC1	acetyl-CoA carboxylase biotin carboxylase subunit
cwlC	N-acetylmuramoyl-L-alanine amidase
spollIAD	stage III sporulation protein
yodR	6-acetamido-3-oxohexanoate:acetyI-CoA CoA transferase beta subunit
glgB	I,4-aipna-glucan-branching enzyme
bofC	general stress protein
cotJC	spore coal peptide assembly protein
ywcA	Na+/solute symporter
ytiD	putative anion ABC transporter permease
IonB	Lon-like A i P-dependent protease
spoVAF1	stage v sporulation protein

	yurZ	putative alkylhydroperoxidase
	yoaR	hypothetical protein
	spoIVFB	stage IV sporulation protein
	sspK	small acid-soluble spore protein
	ytrH	sporulation membrane protein
	ytrl	sporulation membrane protein
	dacB	D-alanyl-D-alanine carboxypeptidase
	yutH	spore coat protein
	ycgF	putative amino acid efflux protein
	spoIIIAE	stage III sporulation protein
	spoIIIAA	stage III sporulation protein
	ylaJ	hypothetical protein
	spoIVFA	stage IV sporulation protein
	yusN	putative spore coat protein
	spmB	spore maturation protein
	yodT	N(6)-acetyl-beta-lysine transaminase precursor
	yodP	beta-lysine acetyltransferase
	ydhD	putative sporulation-specific glycosylase
	pdaB	polysaccharide deacetylase
	ytlC	putative anion ABC transporter ATP-binding protein
	ylzJ	hypothetical protein
	yheC	hypothetical protein
	yuiC	sporulation protein
	ytlA	putative anion ABC transporter substrate-binding protein
	spoVAA	stage V sporulation protein
	yodS	6-acetamido-3-oxohexanoate:acetyl-CoA CoA transferase alpha subunit
	yknT	putative sporulation protein
	asnO	asparagine synthase
	cotF	spore coat protein
	yqf I	hypothetical protein
	glgC	glucose-1-phosphate adenylyltransterase
	gin	
	spoliM	stage II sporulation protein
	pppG	amell acid acluble apera protein
	sspr	small acid-soluble spore protein
	yiaD vto A	spore coal protein r-like protein
	yieA vicA	sporulation protein
	yjcA tal	protein-dutamine damma-dutamyltransferase
	vdfS	
	yuio sead	spore envelope assembly protein
	vokU	hypothetical protein
	vitG	putative major facilitator superfamily protein
	yahQ	hypothetical protein
	vitD	phosphosulfolactate synthase
	vlbJ	putative sporulation integral membrane protein
	vtvl	sporulation integral membrane protein
	,	

spo'	VB	stage V sporulation protein
ye	etF	hypothetical protein
ssi	οN	small acid-soluble spore protein
yki	οP	hypothetical protein
	σtV	spore coat protein
spr	πA	spore maturation protein
	tlp	small acid-soluble spore protein
У	itF	putative mandelate racemase
yt.	zH	hypothetical protein
yl	kvl	putative membrane protein
yj	aZ	hypothetical protein
	pА	ClpP-like protease
уи	ıtG	putative phosphatidylglycerophosphatase
ssi ssi	рD	small acid-soluble spore protein
spo	VR	stage V sporulation protein
yqi	hH	putative ATP-dependent helicase
yko	oV 	Ku-type ATP-dependent DNA helicase
spov	/IF _	sporulation-specific transcription factor
ym.	a⊢	hypothetical protein
yhj	R1	hypothetical protein
co	tM T	spore coat protein
ge	er I	spore germination protein
spovi	FB	dipicolinate synthase subunit
уре	eQ	hypothetical protein
	DIA	outer spore coat protein
yu	xC au	
you	uп hC	
yai	EA	disidelinete synthese subusit
spov		thial digulfide avideraduatesa
	27	hypothetical protoin
BLIUZ I	SI AR	
Spot/	4D 4N	hypothetical protein
	08	
BLIOOS	ırR	
	bP	hypothetical protein
	bR	hypothetical protein
yn yn	22 cO	hypothetical protein
	οU	ATP-dependent DNA ligase
BLi008	04	NAD-dependent epimerase/dehvdratase
	bP	spore protein
	qA	hypothetical protein
	nC	DUF1805 family protein
vn	dL	hypothetical protein
yw	сE	spore morphogenesis/germination protein
yya	aD	sporulation protein
al	cU	putative I-rhamnose-proton symporter

	yitE	UPF0750 membrane protein
	ytzC	DUF2524 family protein
	lytH	peptidoglycan hydrolase
	yphA	putative membrane protein
	yueG	spore germination protein
	pbpl	sporulation-specific penicillin-binding protein 4b
	adhB	alcohol dehydrogenase-like protein
	phoR	two-component sensor histidine kinase
	cotE	spore coat protein
	yutC	putative sporulation lipoprotein
	ykzE	hypothetical protein
	spollD	stage II sporulation protein
	ykuS	UPF0180 family protein
	cotH	inner spore coat protein
	ftsK	DNA translocase
	yhfA	putative membrane protein
	ypjB	sporulation protein
	ldt	putative L,D-transpeptidase
	clpC	ATP-dependent Clp protease ATP-binding subunit
	bofA	pro-sigmaK processing inhibitor
	ycgL	hypothetical protein
	jag	hypothetical protein
	cwlJ	cell wall hydrolase
	disA	DNA integrity scanning protein
	exuR	HTH-type transcriptional repressor
	ylxW	DUF881 family protein
	spollIJ	membrane protein translocase
	divIB	division initiation protein
	murG	pyrophosphoryl-undecaprenol N-acetylglucosamine transferase
	spo0J	stage 0 sporulation protein
	ytkD	nucleoside triphosphatase
	yyxA	putative serine protease
	spove	stage v sporulation protein
	ionC	4 hydroxy 3 mothylbut 2 on 1 yl dishoeshate systhese
	BL 102802	A-hydroxy-s-methybut-z-en-i-yi diphosphate synthase
	BLIU3803	sporulation initiation inhibitor protein
	soj	
	BL i03150	hypothetical protein
	ftsV	
	nbnF	penicillin-binding protein 2C
	veaA	hypothetical protein
	sp/A	transcriptional repressor
	mcsB	modulator
	ytaF	putative sporulation protein
	nfo	endonuclease 4
	subA	supressor

yrrS	DUF1510 family protein
mcsA	modulator
spoVT	stage V sporulation protein
ylxX	DUF881 family protein
yfiJ	hypothetical protein
phoP2	two-component response regulator
sbp	small basic protein
fabL	NAD(P)-binding enoyl-(acyl-carrier-protein) reductase
yqfU	UPF0750 membrane protein
yozE	UPF0346 family protein
BLi04323	putative phage resolvase
rsmA	dimethyladenosine transferase
ytwl	DUF441 transmembrane protein
yrzA	hypothetical protein
ybbC	hypothetical protein
cotZ	spore coat protein
cotY	spore coat protein
cotX	spore coat protein
uxuA1	mannonate dehydratase
exuT	hexuronate transporter
splB	spore photoproduct lyase
ylbD	hypothetical protein
ylbE2	hypothetical protein
ymxH	hypothetical protein
yobw	sporulation memorane protein
ypzA	nypotnetical protein
yqrz	hypothetical protein
yq1x	hypothetical protein
yizh gova	
coxA	sportulation cortex protein
SaiA star	sporulation protein
yua	sporulation protein
yund III24	altronate hydrolase
ctnR	carboxy-terminal processing protease
tuaH	putative teichuronic acid biosynthesis divcosyltransferase
tuaG	putative teichuronic acid biosvnthesis glycosvltransferase
tuaF	teichuronic acid biosynthesis protein
mmaC	butvrvl-CoA dehvdrogenase
mmgB	3-hydroxybutyryl-CoA dehydrogenase
mmaA	acetyl-CoA acetyltransferase
mm <u>q</u> D	2-methylcitrate synthase
mmgE	2-methylcitrate dehydratase
yqiQ	methylisocitrate lyase
BLi02833	hypothetical protein
BLi05032	hypothetical protein
uxaB	altronate oxidoreductase

yaaC	hypothetical protein
ybxH	hypothetical protein
ydfR	DUF421 transmembrane protein
yfhS	hypothetical protein
yfkE	H+/Ca2+ exchanger
yhcT	putative pseudouridine synthase
yhdC	hypothetical protein
yisN	DUF2777 family protein
yjfA	hypothetical protein
ykjA	UPF0702 transmembrane protein
ykoN	glycosyltransferase
ykoQ	putative metallo-dependent phosphatase
ykoS	hypothetical protein
ylyA	hypothetical protein
yngL	putative membrane protein
уррС	hypothetical protein
yqgE	putative major facilitator superfamily protein
yqzG	hypothetical protein
yrbG	DUF421 transmembrane protein
yrrl	UPF0118 transmembrane protein
yveA	aspartate-proton symporter
 ywaF	transmembrane protein
ywjE	putative minor cardiolipin synthase

Figure S11 Sporulation. Heat map representation of Z-score transformed NPKM values. The depicted genes were identified as members of the sporulation cascade by reciprocal BLAST analysis [10] between *B. licheniformis* genes [1] and *B. subtilis* genes assigned to sporulation [11]. Genes with an assigned antisense RNA [1] are marked in blue, genes with NPKM values <10 at all sampling points are indicated by dark grey boxes, and statistically not significant values are indicated by light grey boxes.

Figure S12 Iron starvation. Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as marker genes for *B. licheniformis* iron starvation by Nielsen et al. [12]. Genes with an assigned antisense RNA [1] are marked in blue, genes with NPKM values <20 at all sampling points are indicated by dark grey boxes and statistically not significant values are indicated by light grey boxes.

A well described indicator for iron starvation is the induction of siderophore anabolic genes (*dhbABCEF* and *rhbCDEF*) and siderophore importer genes (*feuABC* and *yclNOPQ*) [12], which are under control of the transcriptional regulator Fur [13]. With exception of the Ycl operon, these transcripts of these genes are not abundant during the fermentation process. This behavior indicates that iron starvation does not occur in any of the examined fermentation phases and corresponds to the observation that the Fur regulon is only induced during growth in minimal medium with restricted iron supply but not in rich medium [12, 14, 15], as used in this study.

Figure S13 Heat shock response. Heat map representation of Z-score transformed NPKM values. The depicted **(A)** HrcA and **(B)** CtsR regulons have been identified as *B. licheniformis* heat stress markers by Nielsen et al. [12]. Genes with an assigned antisense RNA [1] are marked in blue, asterisks indicate a detected protein spot for the respective gene (Additional File 2: Table S3).

In cases of heat shock in *B. licheniformis*, the HrcA regulon including the *dnaK* and the *groE* operons and the CtsR regulon have been shown to be induced [12]. Furthermore, genes involved in iron and purine metabolism were upregulated, whereas the ABC transporter encoding ytrABCEF operon was repressed [12]. Since the here analyzed fermentation was not performed under heat shock conditions, the data did not show a typical heat shock response. Nevertheless, a transcriptional reaction to the fermentation temperature of 39 °C cannot be excluded, as the responses between moderate and severe heat shock can differ remarkably [16]. Despite the constant and moderate process temperature, differential expression of genes involved in a classic heat shock response [12, 17, 18] was observed. The ATP-dependent ClpCP protease shows changes in transcript abundance. However, the enzyme has been reported to be involved in proteolysis of misfolded proteins, which were caused by a variety of different stressors [19, 20] including for example the mentioned oxidative stress [14, 21, 22]. A reaction to nonheat stressors is also known for the chaperonins GroEL and GroES [23–25], which were transcribed with NPKM values >1000 at all sampling points or sampling point I, respectively. Although both chaperonins are encoded by the groE operon, the ratio of the transcript levels of the genes is highly variable between sampling points I and III – whereas groES declines over time, the groEL transcripts seem to be increasing. An explanation might be the processing of the bicistronic transcript into two monocistronic mRNAs. This effect has been described for Agrobacterium tumefaciens [26], in which the accumulation of groEL over time could also be shown. Furthermore, the determined GroEL protein amount (Additional File 2: Table S3) does not correlate with the amount of groEL mRNA, but shows the strongest abundance of protein at sampling point I.

Figure S14 Phosphate starvation response. Heat map representation of Z-score transformed NPKM values. The depicted genes have been identified as marker genes for the *B. licheniformis* phosphate starvation response by Hoi et al. [27]. The figure shows the transcript abundances of those marker genes within the fermentation samples of one replicate (replicate M). Genes with an assigned antisense RNA [1] are marked in blue; asterisks indicate a detected protein spot for the respective gene Additional File 2: Table S3. Genes with NPKM values <10 at all sampling points are indicated by dark grey boxes.

At sampling point V, transcripts of *pstS* and the downstream *pst* operon encoding a phosphate ABC transporter (see also Figure 3), but also of phy, phoB, phoD, and yfnK are highly abundant. All of the mentioned genes are members of the Pho regulon, also known to provide a specific phosphate starvation stress response in B. subtilis [28, 29]. Furthermore, yurl and dhaS abundant as described by Hoi et al [27], supporting the inference of a phosphate shortage in this sample. However, no corresponding transcriptional response could be observed for the other fermentation samples (L and R) of sampling point V. This disparity coincides with an increased partial pressure of oxygen, starting ~1 h ahead of sampling point M-V (Additional File 1: Figure S1), which indicates a decreased metabolic activity in this sample at this fermentation stage. At the same time, the genes yvnA, alsD, and *alsS* show no increased transcript abundance. This is in accordance with the results obtained by Hoi et al. [27], who observed no induction of these genes in the early phases (~2 h) of declining metabolic activity after phosphate exhaustion. In addition, transcripts of genes involved in metabolic pathways, chemotaxis and especially teichoic acid synthesis were lacking, as also shown before [27]. The transcript abundance of the teichuronic acid synthesis operon (tuaABCDEFG), which enables the replacement of phosphate-rich teichoic acids, has been described as additional indicator of phosphate starvation in B. subtilis [28, 30] and could also be observed in sample M-V (data not shown). In summary, these results indicate that fermentation M is under phosphate limitation during the latest stage of the process. This finding might be a target for bioprocess optimization aiming at the prolongation of the fermentation process.

Figure S15 Putative Tat signal peptide of Subtilisin Carlsberg. (A) Tat signal peptides contain a conserved twin-arginine motif, defined as SRRXFLK, in which the consecutive arginine residues are almost always invariant [31]. Nevertheless, one arginine residue (\S), but not both, can be replaced by a lysine residue [32, 33]. The other motif residues occur with a frequency of >50%, whereas the amino acids at the # positions are usually hydrophobic and the amino acid at the X position is polar [31, 34]. (**B**) The signal peptide of Subtilisin Carlsberg matches the Tat model motif with the exception of two hydrophilic residues in the middle positions, a condition not considered an exclusion criterion for a putative Tat signal peptide motif [35, 36]. In Sec signal peptides, helix breaking glycine or proline residues are often found in the middle of the hydrophobic domain following the N-terminal domain [37]. These are not found in *B. subtilis* Tat signal peptides [36] and also not in the signal peptide of Subtilisin Carlsberg.

References

1. Wiegand S, Dietrich S, Hertel R, Bongaerts J, Evers S, Volland S, Daniel R, Liesegang H: **RNA-Seq of** *Bacillus licheniformis*: active regulatory **RNA features expressed within a productive fermentation**. *BMC Genomics* 2013, revised.

2. Detsch C, Stülke J: Ammonium utilization in *Bacillus subtilis*: transport and regulatory functions of NrgA and NrgB. *Microbiology*+ 2003, 149:3289–3297.

3. Bakermans C, Sloup RE, Zarka DG, Tiedje JM, Thomashow MF: **Development and use of genetic system to identify genes required for efficient low-temperature growth of** *Psychrobacter arcticus* **273-4**. *Extremophiles* 2009, **13**:21–30.

4. González-Pastor JE: **Cannibalism: a social behavior in sporulating** *Bacillus subtilis. FEMS Microbiol Rev* 2011, **35**:415–24.

5. Dischinger J, Josten M, Szekat C, Sahl H-G, Bierbaum G: **Production of the novel two-peptide lantibiotic lichenicidin by** *Bacillus licheniformis* **DSM 13.** *PLoS One* 2009, **4**:e6788.

6. Voigt B, Schweder T, Becher D, Ehrenreich A, Gottschalk G, Feesche J, Maurer K-H, Hecker M: **A** proteomic view of cell physiology of *Bacillus licheniformis*. *Proteomics* 2004, **4**:1465–90.

7. Bergara F, Ibarra C, Iwamasa J, Patarroyo JC, Aguilera R, Ma LM: CodY Is a Nutritional Repressor of Flagellar Gene Expression in *Bacillus subtilis*. *J Bacteriol* 2003, **185**:3118–3126.

8. Begley M, Cotter PD, Hill C, Ross RP: Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. *Appl Environ Microbiol* 2009, **75**:5451–60.

9. Wecke T, Veith B, Ehrenreich A, Mascher T: Cell envelope stress response in *Bacillus licheniformis*: integrating comparative genomics, transcriptional profiling, and regulon mining to decipher a complex regulatory network. *J Bacteriol* 2006, **188**:7500–11.

10. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ: **Proteinortho: detection of** (co-)orthologs in large-scale analysis. *BMC Bioinformatics* 2011, **12**:124.

11. Mäder U, Schmeisky AG, Flórez LA, Stülke J: SubtiWiki--a comprehensive community resource for the model organism *Bacillus subtilis*. *Nucleic Acids Res* 2012, **40**:D1278–87.

12. Nielsen AK, Breüner A, Krzystanek M, Andersen JT, Poulsen TA, Olsen PB, Mijakovic I, Rasmussen MD: Global transcriptional analysis of *Bacillus licheniformis* reveals an overlap between heat shock and iron limitation stimulon. *J Mol Microbiol Biotechnol* 2010, **18**:162–73.

13. Ollinger J, Song K-B, Antelmann H, Hecker M, Helmann JD: Role of the Fur Regulon in Iron Transport in *Bacillus subtilis*. *J Bacteriol* 2006, **188**:3664–3673.

14. Mostertz J, Scharf C, Hecker M, Homuth G: **Transcriptome and proteome analysis of** *Bacillus subtilis* gene expression in response to superoxide and peroxide stress. *Microbiology*+ 2004, **150**:497–512.

15. Helmann JD, Wu MFW, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C: The Global Transcriptional Response of *Bacillus subtilis* to Peroxide Stress Is Coordinated by Three Transcription Factors. *J Bacteriol* 2003, 185:243.

16. Barreiro C, Nakunst D, Hüser AT, De Paz HD, Kalinowski J, Martín JF: **Microarray studies reveal a** "differential response" to moderate or severe heat shock of the HrcA- and HspR-dependent systems in *Corynebacterium glutamicum*. *Microbiology*+ 2009, **155**:359–72.

17. Helmann JD, Wu MFW, Kobel PA, Gamo F-J, Wilson M, Morshedi MM, Navre M, Paddon C: **Global Transcriptional Response of** *Bacillus subtilis* **to Heat Shock** *J Bacteriol* 2001, **183**:7318.

18. Schumann W: The Bacillus subtilis heat shock stimulon. Cell Stress Chaperon 2003, 8:207–17.

19. Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M: The Clp proteases of *Bacillus subtilis* are directly involved in degradation of misfolded proteins. *J Bacteriol* 2000, **182**:3259–65.

20. Frees D, Savijoki K, Varmanen P, Ingmer H: Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. *Mol Microbiol* 2007, **63**:1285–95.

21. Leichert LIO, Scharf C, Hecker M: Global Characterization of Disulfide Stress in *Bacillus subtilis*. J *Bacteriol* 2003, **185**:1967.

22. Schroeter R, Voigt B, Jürgen B, Methling K, Pöther D-C, Schäfer H, Albrecht D, Mostertz J, Mäder U, Evers S, Maurer K-H, Lalk M, Mascher T, Hecker M, Schweder T: **The peroxide stress response of** *Bacillus licheniformis. Proteomics* 2011, **11**:2851–66.

23. Babu MMG, Sridhar J, Gunasekaran P: Global transcriptome analysis of *Bacillus cereus* ATCC 14579 in response to silver nitrate stress. *J Nanobiotechnology* 2011, **9**:49.

24. Lee N, Yeo I, Park J, Hahm Y: Growth inhibition and induction of stress protein, GroEL, of *Bacillus cereus* exposed to antibacterial peptide isolated from Bacillus subtilis SC-8. *Appl Biochem Biotechnol* 2011, 165:235–42.

25. Seydlová G, Halada P, Fišer R, Toman O, Ulrych A, Svobodová J: **DnaK and GroEL chaperones are recruited to the** *Bacillus subtilis* membrane after short-term ethanol stress. *J Appl Microbiol* 2012, 112:765–74.

26. Segal G, Ron E: The *groESL* Operon of *Agrobacterium tumefaciens*: Evidence for Heat Shock-Dependent mRNA cleavage. *J Bacteriol* 1995, 177:750–57.

27. Hoi LT, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, Feesche J, Maurer K-H, Hecker M, Schweder T: **The phosphate-starvation response of** *Bacillus licheniformis*. *Proteomics* 2006, **6**:3582–601.

28. Allenby NEE, Connor NO, Prágai Z, Ward C, Wipat A, Harwood CR: Genome-Wide Transcriptional Analysis of the Phosphate Starvation Stimulon of *Bacillus subtilis*. *J Bacteriol* 2005, **187**:8063.

29. Antelmann H, Scharf C, Hecker M: **Phosphate Starvation-Inducible Proteins of** *Bacillus subtilis*: **Proteomics and Transcriptional Analysis**. *J Bacteriol* 2000, **182**:4478.

30. Liu W, Hulett FM: Comparison of PhoP binding to the *tuaA* promoter with PhoP binding to other Phoregulon promoters establishes a *Bacillus subtilis* Pho core binding site. *Microbiology*+ 1998, **144**:1443– 1450.

31. Palmer T, Berks BC: The twin-arginine translocation (Tat) protein export pathway. *Nat Rev Microbiol* 2012, **10**:483–96.

32. DeLisa MP, Samuelson P, Palmer T, Georgiou G: Genetic analysis of the twin arginine translocator secretion pathway in bacteria. *J Biol Chem* 2002, **277**:29825–31.

33. Ize B, Gerard F, Zhang M, Chanal A, Voulhoux R, Palmer T, Filloux A, Wu L -F: In vivo Dissection of the Tat Translocation Pathway in *Escherichia coli*. *J Mol Biol* 2002, **317**:327–335.

34. Kouwen TRHM, van der Ploeg R, Antelmann H, Hecker M, Homuth G, Mäder U, van Dijl JM: **Overflow** of a hyper-produced secretory protein from the *Bacillus* Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics. *Proteomics* 2009, **9**:1018–32.

35. Berks BC: A common export pathway for proteins binding complex redox cofactors? *Mol Microbiol* 1996, **22**:393–404.

36. Van Dijl JM, Braun PG, Robinson C, Quax WJ, Antelmann H, Hecker M, Müller J, Tjalsma H, Bron S, Jongbloed JDH: Functional genomic analysis of the *Bacillus subtilis* Tat pathway for protein secretion. *J Biotechnol* 2002, **98**:243–54.

37. De Vrije GJ, Batenburg AM, Killian JA, De Kruijff B: Lipid involvement in protein translocation in *Escherichia coli*. *Mol Microbiol* 1990, **4**:143–150.