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S1 The approximate HO-GSVD in the full rank case

One of the interesting properties of our approximate HO-GSVD, is its ability to revert to the

standard GSVD (if H = 2) and the HO GSVD (if H > 2) in the special case where the input

matrices Gh are full column rank, as detailed below.

S1.1 Analysis of 2 full rank co-expression matrices

Our algorithm searches for a common decomposition of a set of matrices Gh ∈ R
n×p by finding

the eigenvector decomposition of W ∈ R
p×p defined as

W =
1

H(H − 1)

H
∑

h=1

H
∑

r>h

(EhE
+
r + ErE

+
h ), (1)

with Eh = GT
hGh ∈ R

p×p representing a symmetric positive co-expression matrix for condition

H, and with E+. denoting the Moore-Penrose inverse of the matrix E.

In the case for H = 2, this expression of W reduces to

W =
1

2

(

E1E
+
2 + E2E

+
1

)

(2)

which can be rewritten as follows when the matrices Gh are full column rank

W =
1

2

(

E1E
−1
2 + E2E

−1
1

)

(3)

Link with the Generalised Singular Value Decomposition (GSVD)

Under this scenario, the Generalised Singular Value Decomposition (GSVD) for a pair of full

column rank matrices matrices G1 ∈ R
l×n with l ≥ n and G2 ∈ R

m×n is given by

G1 = U1Σ1X
−1 and G2 = U2Σ2X

−1, (4)

where U1 ∈ R
l×l and U2 ∈ R

m×m are both orthogonal, Σ1 ∈ R
l×n and Σ2 ∈ R

m×n are

diagonal Σ1 = diag(σ1,1, σ1,2, . . . , σ1,n) and Σ2 = diag(σ2,1, σ2,2, . . . , σ2,q) with non-negative

entries, q = min(m,n) and X ∈ R
n×n is invertible [1]. In this case, it can be shown that

ΣT
1 Σ1 +ΣT

2 Σ2 = In [1] and by a simple reordering of the rows of X−1, the diagonal entries in
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Σ1 can be chosen to be with increasing order 0 ≤ σ1,1 ≤ σ1,2 ≤ · · · ≤ σ1,n while those of Σ2 are

in decreasing order σ2,1 ≥ σ2,2 ≥ · · · ≥ σ2,q ≥ 0. The ratios σ1,i/σ2,i are the generalised singular

values of G1 and G2. The rows of X−1 provide a common basis for the decomposition of G1

and G2. Therefore, by defining V = (X−1)T we can rewrite the GSVD decomposition as

G1 = U1Σ1V
T and G2 = U2Σ1V

T , (5)

where U1 ∈ R
l×l and U2 ∈ R

m×m are orthogonal, V ∈ R
n×n is nonsingular. In practical

applications, this GSVD of G1 ∈ R
l×n and G2 ∈ R

m×n can easily be obtained using the Paige’s

algorithm [2].

Therefore in the full rank case (H = 2), the existence of an exact decomposition of Gh =

UhΣhV
T (h = 1, 2) with Uh ∈ R

p×p orthogonal is guaranteed, and we can then rewrite E1 and

E2 as follows :

E1 = GT
1 G1 = V Σ2

1V
T

and

E2 = GT
2 G2 = V Σ2

2V
T .

Plugging E1 and E2 into (3), we have the following decomposition of W ∈ R
p×p

W =
1

2
(E1E

−1
2 + E2E

−1
1 )

=
1

2
V (Σ2

1Σ
−2
2 +Σ2

2Σ
−2
1 )V −1 (6)

where the diagonal entries of Σ2
h(h = 1, 2) are the square of those in Σh and V ∈ R

p×p is

invertible. Equation (6) can be interpreted as the eigen-decomposition of W , where the columns

of V (i.e., vk with k = 1, 2, . . . , p) are the eigenvectors and the corresponding eigenvalues are the

diagonal entries of the matrix Σ2
1Σ

−2
2 + Σ2

2Σ
−2
1 . Hence the eigenvalue decomposition of W as

defined in (1) coincides with the standard GSVD in the case H = 2, with Gh full column rank.

S1.2 Analysis of more than 2 full rank co-expression matrices

It is straightforward to see that in the full rank case our algorithm reverses to the HO-GSVD

defined by Ponnapali [3]. Indeed, in this case, The Moore-Penrose inverse of Eh, E
+
h is equal to

the standard inverse of Eh and W can be rewritten as

W =
1

H(H − 1)

H
∑

h=1

H
∑

r>h

(EhE
−1
r + ErE

−1
h ), (7)
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which is the formulation of W used in [3]. Therefore in the case were p ≤ n, the proposed

algorithm is equivalent to using the HO GSVD proposed by Ponnapali et al., with the only

difference that the Gh matrices in our our case are transposed compared to those used in the

framework proposed in [3].

S2 Cluster nodes selection and empirical validation

S2.1 Empirical cluster validation

We developed an automatic computational procedure for “validation” of candidate clusters and

determine their statistical significance across conditions. A similar “validation” procedure was

introduced by [4], which was based on the calculation of a quality measure for the cluster (i.e.,

ch, the density calculated inside the cluster over the density calculated outside the cluster in

condition h, see S2.1.1) and on the empirical P -values by permutations. However, the cluster

quality measure and empirical P -values were designed only to analyse two conditions and assess

the significance of the “differential” clusters (i.e., clusters present in one but not in the other

condition). Here, we have extended this approach to the general case of multiple input datasets

Gh (h = 1, . . . H and H ≥ 2) and to assess the significance of both “common” and “differential”

clusters.

Suppose that we can reorder all input data (Gh, h = 1, . . . ,H and H ≥ 2) using an infor-

mative column vector v∗ of V such that we can identify a group of τ nodes forming a candidate

cluster s⋄ present in H in conditions (Gin
a ∈ G, a = 1, . . . ,H in, 0 ≤ H in ≤ H) but not in the

other Hex conditions (Gex
b ∈ G, b = 1, . . . ,Hex and Hex = H − H in). Then we can use the

following two-step procedure to assess the significance of the candidate cluster and calculate the

empirical P -value as follows:

Step 1. Apply the random permutation test separately to each input dataset Gh and identify

the conditions Gin containing s⋄, as follows:

Step 1.1. compute the cluster quality measure ch (see (8) in S2.1.1) for the cluster s⋄

consisting of τ nodes in each reordered dataset Gh
∗ (Gh reordered by column v∗);

Step 1.2. randomise the nodes within each dataset and compute the cluster quality ĉh

for a set of τ nodes separately in each randomised dataset Ĝh; repeat this step M

times;

Step 1.3. separately for each dataset Gh compute the P -value (Ph) as the number of

proportion of ĉh samples that exceed ch in M permutations;
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Step 1.4. we will use Ph to identify the datasets (Gin) where the candidate cluster s⋄ is

present: for each dataset if the P -value is lower than a given threshold (defined by the

user, default value 0.05), we will consider the cluster s⋄ present in the corresponding

dataset Gh and so we will put Gh into the set Gin, otherwise we will put the dataset

Gh into the set Gex. The sets Gin and Gex are passed as input for Step 2 and will

used to calculate the overall cluster quality measure q across multiple conditions.

Step 2. Apply the random permutation test to all datasets and determine the overall signifi-

cance of the candidate cluster s⋄ of τ nodes which is present in Gin but not in Gex. This

step will generate an single P -value (P ) for the overall significance of the cluster as follows:

Step 2.1. compute an overall cluster quality q across multiple conditions (see (9) in S2.1.1)

for the candidate cluster s⋄ consisting of τ nodes, which is present in Gin but not in

Gex;

Step 2.2. randomise the nodes within each condition and compute the cluster quality q̂

for a set of τ nodes; repeat this M times;

Step 2.3. compute the final P -value (P ) for the cluster s⋄ as the proportion of q̂ samples

that exceed q in M permutations.

In summary, this two-step procedure generates two empirical P -values: (Step 1) Ph for cluster

s⋄ in each condition h and (Step 2) P for for cluster s⋄ in all conditions where the cluster is

present (Gin). For convenience, we refer to Ph as the individual P -value and P as the overall

P -value. We use the individual P -value in Step 1 to identify the conditions Gin where the

candidate cluster s⋄ is detected and in Step 2 we calculate the overall P -value to assess the

overall significance of the cluster in conditions Gin.

While previous studies showed that M = 1000 randomisations are usually sufficient to es-

timate the cluster significance [4], more randomisations are typically suggested to assess the

significance of larger and more complex cluster structures. Since large number of permutations

(e.g., M ≥ 10, 000) would be computational expensive in the case of large datasets with several

thousands of features measured across many conditions, in our algorithm we have implemented

incremental permutations in both Step 1.2 and Step 2.2. For example, in Step 1, we randomise

each condition for a small number of times; then we compute Ph for each dataset and we in-

crease the number of permutations only for those Gh whose corresponding Ph is below a given

threshold P ∗ (i.e., Ph < P ∗). For the Gh with Ph ≥ P ∗, we will stop the permutation procedure

and assign the Gh to the set of conditions where the cluster in not present (Gex). A similar
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procedure based on incremental permutations is employed in Step 2. The user can specify the

minimum number of permutations (default 100), maximum number of permutations (default

1, 000) and the critical P ∗ used to stop incremental permutations (default P ∗ = 0.05).

S2.1.1 Cluster quality measures

The permutation based procedure uses two cluster quality measures: the individual cluster

quality ch and the overall cluster quality q. The individual cluster quality ch for cluster s⋄ is

defined on each dataset Gh as

ch =
the density within the cluster in Gh

the density outside the cluster in Gh
(8)

where the density f(s⋄) corresponds to the average weight calculated for a group of nodes, as

previously described [4]. The overall cluster quality q is used to assess the relative cluster density

for both “differential” and “common” clusters and it is calculated across all datasets as

q =

∏Hin

a=1 c
in
a

∏Hex

b=1 c
ex
b

, (9)

where cina represents the cluster quality ch calculated in condition Gin
a where the candidate

cluster s⋄ was detected, whereas the cexb denotes the ch computed from the other condition Gex
b

where the cluster s⋄ was not detected. When s⋄ is a “common” cluster detected in all conditions

(i.e., Gin = G and H in = H), (9) is equivalent to q =
∏H

h=1 ch.

Table SN1 summarises cluster quality measures (q) used in the case of “common” and “differ-

ential” clusters selected by the HO-GSVD-based algorithm and by the GSVD-based algorithm.

GSVD HO-GSVD

Cluster quality measure
q = c1

c2
q =

∏
H

in

a=1
cina∏

Hex

b=1
cex
bfor “differential” cluster

Cluster quality measure
q = c1 × c2 q =

∏H
h=1 ch

for “common” cluster

Table SN1: Comparison of cluster quality measures used to “validate” clusters obtained by the GSVD-

based algorithm and the HO-GSVD-based algorithm.

Alternative cluster quality measures
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In addition to the above mentioned ch and q, we have designed different cluster quality measures

which are implemented in our algorithm and can be chosen by the user:

Individual cluster quality measure:

c∗h = the density within the cluster in Gh

is a simpler quality measure than the ch defined in (8) which is less suitable for comparing

several conditions (≥ 2) where the background levels show large variations across the Gh.

Overall cluster quality measures: Alternative formulations of q that are implemented in

our algorithm are summarised as follows :

Sum based q =
∑

H
in

a=1
cina∑

Hex

b=1
cex
b

Arithmetic mean based q =
(
∑

H
in

a=1
cina )/Hin

(
∑

Hex

b=1
cex
b

)/Hex

Geometric mean based q =
(
∏

H
in

a=1
cina )

1

Hin

(
∏

Hex

b=1
cex
b

)
1

Hex

Product based q =
Hin(Hin

−1)
∏

H
in

a=1
cina

Hex(Hex
−1)

∏
Hex

b=1
cex
b

Power based q =
∑

H
in

a=1

∑
H

in

d>a
cina (cin

d
)−1

∑
Hex

b=1

∑
Hex

e>b
cex
b

(cexe )−1

Mixture based q =
(
∑

H
in

a=1
cina )/(

∑
H

in

a=1

∑
H

in

d>a
cina (cin

d
)−1)

(
∑

Hex

b=1
cex
b

)/(
∑

Hex

b=1

∑
Hex

e>b
cex
b

(cexe )−1)

Table SN2: Alternative formulations for overall cluster quality measure q.

When s⋄ is a “common” cluster detected in all conditions (i.e., Gin = G and H in = H) we

set the denominator of the above defined cluster quality measure q to 1. From our simulation

studies (see main text) we empirically observed that all the above clusters quality measures q

work equally well to detect “common” clusters present in all conditions. However, to detect

“differential” clusters the product based quality measure was more efficient than (9) and the

arithmetic mean based quality measure performed better than other quality measures when the

cluster is present in all conditions but one (data not shown).
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S3 Details on simulated datasets

S3.1 Identification of common and differential structures in the non full rank

case

To test the ability of the modified HO-GSVD algorithm to capture the hidden covariates in

presence of a ”noisy” HO-GSVD decomposition, we simulated 100 datasets composed of either

200 or 1000 genes observed under 3 conditions with 25 or 50 samples per condition. In each

dataset, we first simulated and exact HO-GSVD decomposition of the form Gh = UhΣhV
T

(h = 1, 2, . . . ,H) before adding a random gaussian noise with variance constant variance σ2 to

each of the Gh matrices.

To simulate the initial decomposition, we first simulated three independent gaussian patterns

vi respectively present in one, two, or three conditions. We then simulated gaussian orthonormal

left basis vectors Uh such that we have the exact covariance structure GT
hGh = V Σ2

hV
T with Σh

a diagonal matrix with the elements σh, i such that

σh,1 = 1, for h = 1, 2, 3

σh,2 = 1 if h = 1, 2, 0 otherwise

σh,3 = 1 if h = 3 0 otherwise

Finally, we added a gaussian independent noise ǫ N(0, σ2) to the data to test the robustness

of the method to the presence of noise. The simulations were carried out for various values of σ

in order to test the effect of increasing noise on the quality of the resulting decomposition. In

our simulations, we define the noise as the total share of variance explained by the noise in the

dataset.

Prop of Error Variance =
σ2

∑

k σ
2
h,k + σ2

=
σ2

2 + σ2

S3.2 Comparison with WGCNA and DiffCoEx for Cluster Identification

We simulated 20 replicates of 4 groups of synthetic datasets. Each of these datasets includes:

H = 7 conditions, p = 5, 000 nodes, n = 30 observations and 3 different clusters. Each group

of datasets corresponds to a given cluster density (see below). Three distinct clusters were

generated within each dataset:

Cluster pattern 1 : “common” cluster present in all 7 conditions where the cluster size is

identical across conditions;
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Cluster pattern 2 : “nested” cluster present in 5 out of 7 conditions (conditions 1, 3, 4, 5

and 7) where the cluster size is incremental across conditions;

Cluster pattern 3 : “overlapping” cluster present in 3 conditions (conditions 2, 3 and 7).

The structure of the “common”, “nested” and “overlapping” clusters is represented in Figure

2 and described in the main text. All simulated datasets were generated in MATLAB. To com-

pare the performance of our method against alternative methods (i.e., WGCNA, DiffCoEx) in

detecting clusters with different densities (measured as the average Pearson correlation between

any pair of nodes within a cluster), we generated 4 groups of datasets, each with different values

of cluster density: 0.1, 0.3, 0.5 and 0.7. To this aim, we used the MATLAB routine mvnrnd

where the non-cluster nodes are random vectors chosen from the multivariate normal distribu-

tion with zero means and covariance matrix equal to identity matrix. On the other hand, the

cluster nodes are random vectors chosen from the multivariate normal distribution with zero

means and a given covariance to control the dependency between the cluster nodes such that the

final cluster density matches the desired levels (i.e., 0.1, 0.3, 0.5 and 0.7). The same procedure

was used to generate 4 similar groups of datasets (with cluster densities 0.1, 0.3, 0.5, 0.7) and

with p = 5, 000 nodes, n = 10 observations in H = 7 conditions. We generated a total of 1,200

datasets, i.e., 560 datasets for each case with n = 10 and n = 30 observations, respectively.

S4 Annotation of gene co-expression networks

Functional enrichment analysis was carried out to assess the biological significance of the ob-

tained gene co-expression clusters by querying DAVID (Database for Annotation, Visualization,

and Integrated Discovery) [5]. DAVID is an unified resource for the analysis and visualisation of

heterogeneous sources of functional annotations such as Gene Ontology (GO) terms, cellular and

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways [5]. All reported enrichments

were significant at 5% FDR level.

Cell- and tissue-type enrichments were investigated using the Cten (Cell Type Enrichment)

tool [6]. Cten uses a database of highly expressed cell specific (HECS) genes derived from publicly

available databases of gene expression profiles from 85 different cell-types. Cten determines the

significance of enrichment in a specific cell-type (or tissue) using the one-tailed Fisher exact test

and the final enrichment score is expressed as -log10 of the Benjamini-Hochberg (BH) adjusted

P -value reported on a circular graph across all cell/tissue types [6].

The PASTAA algorithm was used to identify overrepresented transcription factors binding

10



sites motifs in the promoter of genes within each rat and human cluster [7]. PASTAA com-

pares the ranking of genes present on each cluster with the set of genes that were used in

the microarrays/RNA-seq analyses, based on predicted transcription factors binding affinities.

These binding affinities were determined by a biophysical model using the Transfac [8] verte-

brate transcription factors matrices and considering a genomic region of ±500 bp around the gene

transcription start site. P -values were corrected for multiple testing by applying false discovery

rate correction [9] and a transcription factor was considered to be significantly overrepresented

if FDR ≤ 0.05.

S5 Details on parameterisation of WGCNA and DiffCoEx

WGCNA and DiffCoEx analyses were carried out in R following [10]. Since WGCNA and

DiffCoEx were originally developed for network analysis in single or pairwise conditions respec-

tively, we adapted them for analysis of multiple conditions (H = 7). First, we had to select

a soft thresholding value (β parameter of the power function) common to all 7 conditions for

the WGCNA adjacency function. For each condition, scale-free topology model fitting plots

were obtained following [10] where the coefficients of determination (R2) was plotted against a

range of β values. From the plots, the β parameter value that better fitted in all the conditions

was selected and applied to the correlation matrixes to obtain an adjacency matrix that repre-

sents the co-expression network. Pearson correlation matrix was used in the simulation studies

and Kendall correlations were employed in the real data analyses. The next step consisted of

transforming the adjacency matrix into a node-node dissimilarity matrix, which represents the

distance between each pair of nodes. This was achieved by calculating the Topological Overlap

Matrix (TOM) and converting it into a dissimilarity measure. For multiple-conditions analysis,

we had to select a “consensus TOM” over all conditions and select cut-off values for the hierarchi-

cal clustering dendogram and the dendogram height distribution. In our comparative analysis of

C3D, WGCNA and DiffCoEx methods (reported in Figure 3) we have used the following cut-off

values: 0.995 for the hierarchical clustering dendogram and the 99 percentile of the dendogram

height distribution. Both these values were suggested in the WGCNA guidelines [10].

Since we observed variations in true positive/false positive rates when these two parame-

terization were adopted in the WGCNA and DiffCoEx analyses, here we investigate how the

performance of these methods change when varying values of the percentile of clustering den-

dogram height distribution are considered. To this aim, we have simulated p = 1, 000 gene

expression profiles in n = 30 samples and across H = 7 conditions, and 3 independent repli-
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cates were generated. We considered different types of clusters that are either detected in all

conditions (“common” clusters) or are specific to a subset of conditions (“differential” clusters),

Figure 2. In detail, we simulated clusters of variable sizes as follows: (i) ”common cluster” C1 :

p = 40 nodes, (ii) “differential” cluster C2 : p = 50 nodes in 5 out of 7 conditions and (iii) “dif-

ferential” C3 : p = 200 nodes in 3 out of 7 conditions. These clusters have varying densities as

follows: C1 density = 0.464, C2 density = 0.212 and C3 density = 0.180. We run WGCNA and

DiffCoEx analyses using increasing percentiles of the dendogram height distribution (1, 10, 20,

40, 60, 80, 90, 99 and 99.9, which correspond to cut-off values for the hierarchical clustering den-

dogram 0.9690847, 0.9848499, 0.989019467, 0.9927335, 0.995847767, 0.998072267, 0.998777633,

0.999200633, 0.999233567) and report the TPR and FPR for detection of C1 (solid red line,

WGCNA), C2 (solid green line, DiffCoEx) and C3 (dashed green line, DiffCoEx), see figure

below (Figure SN1). Both WGCNA and DiffCoEx show higher TPR for increasing percentile

cut-off values, eventually reaching 100%. This trend is mirrored by increased false positives at

high percentile values (≥ 90% for WGCNA and ≥ 99% for DiffCoEx, respectively).

Irrespective of this trend, these data show the sensitivity of both WGCNA and DiffCoEx

methods on the choice of the appropriate cut-off, which must be finely tuned to each specific

case and dataset in order to achieve the best compromise between TP and FP. On the contrary,

our HO-GSVD-based approach is parameter free and does not require specification of ad-hoc

parameters that need to be ”tuned” on the input data. The only user-specified parameter is

a statistical threshold (i.e., MER) that is used to assign genes to each cluster and control the

misclassification error at a desired level. This makes C3D a useful tool for real data exploration

and analysis, since the user does not need to specify unknown parameters (required by other

approaches) related to the expected number of clusters or cluster density [11] or related to the

optimal height cut-off in the gene clustering tree [10, 12, 13].
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Figure SN1: Variation in TPR/FPR when different percentiles of the dendogram height distribution

are used in WGCNA and DiffCoEx analyses. Solid red line, WGCNA for detection of C1; solid green

line, DiffCoEx for detection of C2; dashed green line, DiffCoEx for detection of C3. Error bars, standard

deviation measured in three replicated datasets.
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