
Detailed Derivation of the Mathematical Model

We develop our model by separately considering the different pathways. We refer to [1] for a more elaborate

and extensive discussion of the modeling. We start with the ACTH production, transport and release and

the interactions of the adrenals and the Hypothalamus. Concerning the interactions between the glands we

closely follow the approach in [2].

The first ODE concerns the extracellular concentration of cortisol, which is modulated by the exchange

with the anterior pituitary cells (diffusion), the degradation of the molecule and the secretion from the

adrenal cortex. Due to the focus on the anterior pituitary cells we simplify the secretion process from the

adrenal cortex. For that purpose we assume a saturating response with respect to the stimulus of ACTH of

the form:

v1 [ACTHex]

K1 + [ACTHex]
, (1)

where v1 is the limiting secretion rate of cortisol from the adrenal cortex and K1 represents the sensitivity

of the ACTH affine receptors in the adrenal cortex. Altogether, this leads to the following ODE for the

extracellular cortisol concentration:

d[CORex]

dt
=

Vin

Vex
kdiff1 ([CORin] − [CORex]) +

v1 [ACTHex]

K1 + [ACTHex]
− d1 [CORex] , (2)

where Vex and Vin are the volume sizes of the extracellular compartment and the intracellular compartment

(including all cytoplasmic organelles except for the nucleus).

The next extracellular process we model is the secretion of CRH from the Hypothalamus. The release

of CRH is regulated by the amount of stress signals (neurotransmitters) from the nervous system and the

blood cortisol level. We model this by the following ODE:

d[CRH]

dt
=

ks (ksb + stress)

1 + [CORex]/K3
− d2 [CRH] . (3)

K3 stands for the sensitivity of the cortisol affine receptors in the Hypothalamus. ks represents the limiting

secretion rate of CRH. ksb describes the average basal secretion rate of CRH from the Hypothalamus,

irrespective of the current stress level.

The first intracellular species we consider is CORin. The concentration is modified by the already

considered flux trough the membrane of the pituitary gland cells and by the transport of the dimerized GR

complex into the nucleus. This gives rise to a complex non-linear dependency. Since this is additionally

modified by other compounds, we provide a detailed derivation in due course and refer to this non-linear

1



dependence by F ([(GR-COR)2,nu], [CORin], [GR]) for now. Eventually, this yields the following ODE:

d[CORin]

dt
= kdiff1 ([CORex] − [CORin]) − d4 [CORin]

+ F ([(GR-COR)2,nu], [CORin], [GR]) . (4)

The next step is the formation of the GR complex, which happens on a much faster timescale compared

to the previously discussed molecular mechanisms. Hence, we may assume that the complex formation is in

(quasi-)equilibrium, i.e.:

kGRC [GR-COR] = [CORin] · [GR] , (5)

with the dissociation constant kGRC. The GR complex forms a homodimer, where we assume the dimerization

to be in a (quasi-)equilibrium. By the proposed approach we consider the homodimer (GR-COR)2,in as a

separate species and thus as a monomer. Consequently, the concentration of the homodimer is given by:

kGRdim [(GR-COR)2,in] = [GR-COR]2 , (6)

where kGRdim denotes the dissociation constant. The dimerized GR complex is transported to the nucleus,

which we model by the following ODE:

d[(GR-COR)2,nu]

dt
= k2in [(GR-COR)2,in] − k2ex [(GR-COR)2,nu] − d9 [(GR-COR)2,nu] . (7)

The next ODE concerns the RNA sequence obtained when transcribing the GR gene. The transcription

is determined by a basal rate v7 and the catalysis by the GR complex with the maximal rate v8 and the

dissociation/Michaelis-Menten constant K9. The RNA sequence is then transported to the cytoplasma (ktrs2)

or degraded (d15). The final ODE reads:

d[pmGR]

dt
= −ktrs2 [pmGR] + v7 +

v8 [(GR-COR)2,nu]

K9 + [(GR-COR)2,nu]
− d15 [pmGR] . (8)

Consequently, the equation with respect to the messenger RNA mGR is given by:

d[mGR]

dt
=

Vnu

Vin
ktrs2 [pmGR] − d11 [mGR] . (9)

The concentration of the receptor molecule GR is modulated by the translation of the respective mRNA

and again by the non-linear dependence on the transport of the dimerized GR complex. Hence, we obtain

the ODE:

d[GR]

dt
= ktl2 [mGR] + F ([(GR-COR)2,nu], [CORin], [GR]) − d8 [GR] . (10)
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We now consider the fast feedback mechanism via the glucocorticoid membrane receptor. Concerning the

production of the GPCR receptor we do not include regulation by means of other compounds. Therefore, it

is admissible to provide only an abstract formulation, disregarding the processes on the genomic level. The

ODE reads:

d[GPCR]

dt
= v2 − d6 [GPCR] , (11)

where v2 denotes a basal production rate and d6 the degradation rate. With respect to the complex formation

we can again assume a (quasi-)equilibrium, which is particularly justified as it has been experimentally

observed that two ligands bind to the receptor and exhibit positive cooperativity (cf. [3]). We account for

the positive cooperativity of the second cortisol molecule binding by a Hill factor. The dissociation constant

of the complex is denoted by kGC2 and hence the algebraic relation reads:

kGC2 [GPCR-(COR)2] = [CORex]2 · [GPCR] . (12)

The next pathway we consider concerns the feedback mechanism related to CRH and the respective

membrane receptor CRHR. Analogous to the ODE for the GPCR receptor, we use the following equation

for the CRH receptor:

d[CRHR]

dt
= v3 − d7 [CRHR] , (13)

with the basal expression rate v3 and the degradation rate d7. Concerning the complex formation we assume

the following relation:

kCRC [CRHR-CRH] = [CRH] · [CRHR] , (14)

where kCRC is the respective dissociation constant. The binding of CRH to the receptor induces two signaling

cascades regulating the release of ACTH and the production of certain transcription factors (summarized

by TFs here). We start with the formulation of the equation for the transcription factors. A detailed

modeling of the signaling cascade is beyond the scope of the model here. Consequently, we consider only the

cytoplasmic reactions with respect to the TFs production. The stimulating effect by the signaling cascade

is modeled by a standard saturation term, where we account for the fast dynamics of the signaling cascade

by an additional modeling parameter h. Eventually, we have:

d[TFsin]

dt
=

Vnu

Vin
k3ex [TFsnu] − k3in [TFsin] +

v4 [CRHR-CRH]h

Kh
6 + [CRHR-CRH]h

− d12 [TFsin] . (15)

The parameters k3ex and k3in concern the transport/diffusion of the transcription factors to the nucleus. v4

indicates the limiting rate with respect to the stimulus of the CRHR-CRH complex and K6 the sensitivity

3



to the stimulus. d12 is again a standard degradation rate. This leads to the ODE:

d[TFsnu]

dt
= k3in [TFsin] − k3ex [TFsnu] − d13 [TFsnu] . (16)

Concerning the regulation of the POMC gene via the dimerized GR-COR complex and the TFs tran-

scription factors, it has been observed that these two types counteract via competitive inhibition. This yields

the following equation for the transcribed RNA in the nucleus:

d[pmPOMC]

dt
= v5 +

v6 [TFsnu]

K7 (1 + [(GR-COR)2,nu]/K8) + [TFsnu]

− ktrs1 [pmPOMC] − d14 [pmPOMC] . (17)

The transcription is determined by the basal rate v5 and the limiting rate v6 regarding the regulation

by means of the different transcription factors. The dissociation/Michaelis-Menten constant K7 repre-

sents the binding affinity of the TFs transcription factors to the respective DNA sites. K8 denotes the

dissociation/Michaelis-Menten constant with respect to the dimerized GR-COR complex. The transport of

the RNA to the cytoplasm is then accounted for by the parameter ktrs1. This implies the following ODE for

the mRNA in the cytoplasm:

d[mPOMC]

dt
=

Vnu

Vin
ktrs1 [pmPOMC] − d10 [mPOMC] (18)

The modulation of the intracellular ACTH concentration depends on the translation and the cleavage of

the POMC protein and its release from the vesicles, which is regulated by the feedback controls related to

the two membrane receptors. Due to the fast response to the binding of the ligands by means of signaling

cascades, we assume that the release of ACTH directly depends on the amount of formed receptor ligand

complexes, where the catalysis of the CRH-receptor complex and the inhibitory effect of the cortisol-receptor

complex are modeled as competitive inhibition as suggested in [4]. This yields the following ODE:

d[ACTHin]

dt
= ktl1 [mPOMC] − d5[ACTHin]

− k1ex [CRHR-CRH] · [ACTHin]

K4 (1 + [GPCR-(COR)2]/K5) + [CRHR-CRH]
. (19)

The parameter ktl1 describes the translation rate of the POMC mRNA, where we additionally incorporate

the cleavage. d5 is the degradation rate of ACTHin. In accordance with the competitive inhibition, K4 and

K5 denote the sensitivity with respect to the two counteracting signals. Based on (19) the ODE with respect

to the extracellular ACTH concentration immediately follows:

d[ACTHex]

dt
=

Vin

Vex

k1ex [CRHR-CRH] · [ACTHin]

K4 (1 + [GPCR-(COR)2]/K5) + [CRHR-CRH]

− d3 [ACTHex] . (20)

4



The last open relation is the dependence of the cortisol and GR concentration on the diffusion/transport

of the dimerized glucocorticoid receptor complex into the nucleus. Since we do not explicitly model the

complex or the resulting homodimer, we obtain a non-standard non-linear relation, which we derive in the

following. This relation directly follows from the already made assumptions and does not assume any further

simplifications. From the equilibrium assumptions (5) and (6) we obtain:

kGRdim
d[(GR-COR)2,in]

dt
= 2 [GR-COR]

d[GR-COR]

dt
, (21)

kGRC
d[GR-COR]

dt
=

d[CORin]

dt
[GR] + [CORin]

d[GR]

dt
, (22)

by differentiating. As we are interested in the impact of the transport/diffusion of (GR-COR)2 into the

nucleus we may write:

d[(GR-COR)2,in]

dt
=

Vnu

Vin
(k2ex [(GR-COR)2, nu] − k2in [(GR-COR)2,in]) , (23)

i.e. the right hand side describes the impact of the translocation on the concentration of (GR-COR)2 over

time. We reasonably may assume that the cell is neither depleted from cortisol nor GR. If so, also no complex

can form and we have no transport/diffusion into the nucleus. Hence, we can conclude from relation (21):

d[GR-COR]

dt
= kGRdim

1

2

Vnu

Vin

k2ex [(GR-COR)2, nu] − k2in [(GR-COR)2,in]

[GR-COR]
, (24)

and equation (22) yields:

k̄ kGRC kGRdim
k2ex [(GR-COR)2, nu] − k2in [(GR-COR)2, in]

[GR-COR]

=
d[CORin]

dt
[GR] + [CORin]

d[GR]

dt
, (25)

with k̄ := Vnu

2Vin
. As the dimerized glucocorticoid receptor complex consists of two cortisol and two GR

receptors, we obtain:

d[CORin]

dt
=

d[GR]

dt
, (26)

with respect to the influence of the transport/diffusion into the nucleus, i.e. ignoring any degradation or

diffusion out of the cell for now. Reformulating [(GR-COR)2,in] and [GR-COR] by means of the assump-

tions (5) and (6) in equation (25) consequently yields the rate of change for COR and GR concerning the

diffusion/transport of the dimerized glucocorticoid receptor complex into the nucleus. That is, the function

F is given by:

F ([(GR-COR)2,nu], [CORin], [GR]) := k̄

(
k2ex k

2
GRC kGRdim [(GR-COR)2,nu]

[CORin]2 · [GR] + [CORin] · [GR]2

−k2in [CORin] · [GR]

([CORin] + [GR])

)
, (27)
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with k̄ = Vnu

2Vin
.
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