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Calculation of the �exural rigidity

The elastic equations

From the theory of elasticity it is known that the two equations governing the
bending of an elastic rod are [1]:

∂
−→
F elastic

∂l
= −
−→
K (1)

and

∂
−→
M

∂l
=
−→
F elastic× t̂ (2)

where
−→
F elastic is the elastic force,

−→
K is the external force per unit length,

−→
M

is the moment of the internal stresses and t̂ is the tangential unit vector to the
rod.

In our case, the external force is the hydrodynamic force that is applied by
the �uid �ow. In the case of a very low Reynolds number the hydrodynamic
force on an object in the context of resistive force theory can be written as [2]:

−→
F hydro = ξ−→v = (ξ⊥n̂n̂T + ξ‖t̂t̂T )−→v (3)

where −→v is the velocity �eld and ξ is the drag tensor, t̂, in the context of thin
rods, is the tangent unit vector to the rod center line, n̂ is the perpendicular
unit vector to it, and ξ‖ and ξ⊥ are the drag coe�cients in the parallel and

perpendicular directions. Using the facts that (i) t̂ = ∂r̂
∂s , where r̂ is a unit vector

in the direction of the radius vector and the di�erentiation is along the curve by

the reduced curve length parameter s; s ∈ {0, 1}, and (ii) that n̂n̂T = I − t̂t̂T
one gets:

−→
F hydro = ξ⊥

−→v + (ξ‖ − ξ⊥)(∂r̂
T

∂s ·
−→v )∂r̂∂s (4)

Next, using the facts that (i) for a bent rod without torsion ∂
−→
M
∂l = EI ∂

−→r
∂l ×

∂3−→r
∂l3 , and (ii) that s = 1

L l, then, by inserting eq. 4 to eq. 1 one obtains:

∂
−→
F elastic

∂s
= (−ξ⊥−→v − (ξ‖ − ξ⊥)(

∂r̂T

∂s
· −→v )

∂r̂

∂s
) (5)

and

EI

L2

∂2θ

∂s2
ẑ =
−→
F elastic× ∂r̂

∂s
(6)
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To solve these equations we de�ne the dimensionless variables (i)
−→
F ≡

L2

EI

−→
F elastic and (ii) σ ≡ (ξ‖−ξ⊥)

ξ⊥
. We also assume without a loss of generality

that −→v = v0
−→η where −→η is a dimensionless function, and de�ne the additional

dimensionless variable V ≡ ξ⊥L
2

EI v0 . Using these relations we obtain:

∂
−→
F
∂s = −V−→η − σV(∂r̂

T

∂s ·
−→η )∂r̂∂s (7)

and
∂2θ

∂s2
ẑ =
−→
F × ∂r̂

∂s
(8)

For a close duct like the micro�uidic channel that was used in the experiment,
the velocity �eld is equal to: −→η = −η(y(s), z)x̂ (see �gure 1 of the main text).
Using this relation, three coupled di�erential equations can be derived:

∂2θ

∂s2
= Fx cos(θ) + Fy sin(θ) (9)

∂Fx
∂s

= Vη(y(s), z) + σV sin2(θ)η(y(s), z) = (1 + σ sin2(θ))Vη(y(s), z) (10)

∂Fy
∂s

= −σV cos(θ) sin(θ)η(y(s), z) (11)

In particular for e/h� 1 the �ow pro�le in a duct is[3]:

η =

[
1− (2Z − 1)2 +

∞∑
p=1

(−1)p
32

(2p− 1)3π3

cosh((2p− 1)π(h/e)(Y − 1
2 ))

cosh((2p− 1)π/2(h/e))
cos((2p− 1)π(Z − 1

2
))

]
(12)

where Z ≡ z/e and Y ≡ y/h; h being the width of the duct and e its height, ẑ
the axis along the duct short cross-section dimension and ŷ the axis along the
duct long cross-section dimension (see �gure 1 of the main text) .

Solution of the equations using the Matlab function bvp4c

We solved equations 9-11 with the Matlab function bvp4c using the �exural
rigidity as a free variable.
First, a simpler problem was solved where the �ow pro�le inside the duct was

assumed to be �at. That is: η(y, z) = 1. We also de�ne
−→
F? ≡ L2

(EI)?

−→
F elastic

and V? ≡ ξ⊥L
2

(EI)?
v0 where (EI)? = 2.8 × 10−20 Nm−2, the value of the �exural

rigidity that was measured in ref. [4] . In that case, equations 9-11 are reduced
to:

∂2θ

∂s2
= λ(F?x cos(θ) + F?y sin(θ)) (13)
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∂F?x
∂s

= (1 + σ sin2(θ))V? (14)

∂F?y
∂s

= −σV? cos(θ) sin(θ) (15)

where σ was calculated from reference [5], V? was calculated from the infusion
rate, and EI ≡ (EI)?/λ, with λ a unitless factor.

As mentioned in the main text, a note should be made regarding the bound-
ary conditions [1]. At the free end of the cell the elastic forces and the moments

of the forces on it are zero, and hence F?x(1) = F?y(1) = ∂θ(1)
∂s = 0. On the

exist point of the cell from the growth channel, the boundary conditions should
be chosen carefully. Analysis of the pro�les of cells at that end show that the
angle at that point can be di�erent from zero. In addition, the x position of the
midcell at the exist from the growth channel can di�er from the middle of the
growth channel. Hence, cells are not clamped or hinged at that point, but rather
are supported (or at least partly supported). In, fact, when a force that was too
large was applied on cells, they slipped out of the channel, a fact that supports
the conclusion that they are supported at that point. However, for a supported
rod, there is no way to a-priori set the boundary conditions at this point [1].
Hence, for each cell, the direction of the cell midline at the exist from the growth
channel was chosen according to the actual angle that it had at that point (θ0).
Finally, another boundary conditions was chosen to take into account the free
parameter in the �exural rigidity (λ), This condition was that θ(1) should be
equal to the actual angle that the cell had at that point (θmax). Collecting all
this information together, we obtain the following boundary conditions:

θ(0) = θ0
θ(1) = θmax
∂θ
∂s (1) = 0
F?x(1) = 0
F?y(1) = 0

(16)

To actually solve this boundary problem, the encoding θ ≡ q1, ∂θ∂s ≡ q2, F
?
x ≡ q3,

F?y ≡ q4 was used. The initial guess for the shape of the cells were chosen as
a sigmoid, the initial guess for the force in the x̂ direction was chosen to be
a linearly increasing function and that of the force in the ŷ direction to be a
parabolically increasing one.

After solving the above simpli�ed problem. The full problem was solved
with η(y, z) taking from eq. 12, using the results for θ(s), F?(s) and λ of the
simpli�ed problems as the initial guesses for their values. There are however
three points that should be considered that results from the fact that the force
at each point on the cell is di�erent. First, as was mentioned in the text, cells
tend to grow out of the focal plane. and a z stack was used in order to calculate
the location of the midlife of the cell. Since most of the cells reside in a height of
0− 4 µm (0 ≤ Z ≤ 4/26) above the bottom of the main channel, we integrated
out the dependence on this variable from eq. 12 and obtain:
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η =

[
η0 +

8∑
p=1

H(p) cos((2p− 1)π(Y − 1

2
))

]
(17)

where:

η0 ≡
e

e0

ˆ e0/e

0

{1− (2Z − 1)2}dZ (18)

and

H(p) ≡ e

e0

ˆ e0/e

0

(−1)p
32

(2p− 1)3π3

cos((2p− 1)π(Z − 1
2 ))

cosh((2p− 1)π2 (h/e))
dZ (19)

here e0 is the upper point that the cell may reach that was taken to be 4 µm
above the channel surface and the sum was truncated after eight terms to assure
�nite calculation time.

As for the second point, recall that v = v0η . Hence, in order to solve this
problem and still make sure that the value of the velocity is calculated in the
right way, we used in this case a value of v0 so that v0 ×

´ ´
ηdZdY = vFlat0

where vFlat0 is the velocity for a �at �ow pro�le as is calculated from the infusion
rate.
The third point arises from the fact that there is no simple way to let bvp4c to
use values on the LHS of eq. 9 -11 that depend on the point in the ŷ direction
where the current step of bvp4c is calculated. In order to solve this problem
we used the fact that the y coordinate of the point that bvp4c uses for the
current step can be calculated for the relation y =

´
L cos(θ(s))ds, and hence

dy = L cos(θ)ds. Hence, an additional dummy equation can be used

dY

ds
= cos(θ)L (20)

where L ≡ L\e.
Thus, by de�ning q5 ≡ Y , we have used bvp4c to solve the following equations:

∂q1
∂s = q2

∂q2
∂s = λ (q3 cos(q1) + q4 sin(q1))

∂q3
∂s = V?(1 + σ sin2(q1))

[
η0 +

∑8
p=1H(p) cosh((2p− 1)π(h/e)(q5 − 1

2 ))
]

∂q4
∂s = −σV? cos(q1) sin(q1)

[
η0 +

∑8
p=1H(p) cosh((2p− 1)π(h/e)(q5 − 1

2 ))
]

dq5
ds = cos(θ)L

(21)
with the boundary conditions:
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q1(0) = θ0
q1(1) = θmax
q2(1) = 0
q3(1) = 0
q4(1) = 0
q5(0) = 0

(22)

and the �exural rigidity was calculated from the output of bvp4c function.
Finally, in order to obtain the error in the estimation of the �exural rigidity,

eq. 21 was solved again twice, with the initial conditions:

q1(0) = θ0 −∆θ0 q1(0) = θ0 + ∆θ0
q1(1) = θmax −∆θmax q1(1) = θmax + ∆θmax

q2(1) = 0 or q2(1) = 0
q3(1) = 0 q3(1) = 0
q4(1) = 0 q4(1) = 0
q5(0) = 0 q5(0) = 0

(23)

where ∆θ0 and ∆θmax are the errors of the actual angles of the cell at its
beginning and end as obtain from the �ts to its beginning and end sections.
The error of the �exural rigidity was estimated as the standard deviation of the
�exural rigidities as obtain from bvp4c in the three cases.
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