

Figure S1. Go annotation on molecular functions of small peptides identified in the cDNA library of C. flavidus venom duct.

|    |                         | 10                                                          | 20         | 30                                              |
|----|-------------------------|-------------------------------------------------------------|------------|-------------------------------------------------|
|    | $\cdots $               | $\cdot \mid \cdot \cdot \cdot \cdot \mid \cdot \cdot \cdot$ | .          | $\cdot \mid \cdot \cdot \cdot \mid \cdot \cdot$ |
| A  | MGMG <mark>M</mark> RMM | -FTVF <mark>LL</mark> VVL                                   | ATTVVSFTSG | G                                               |
| В  | MHLY                    | -TYLY <mark>LL</mark> VPL                                   | VTFHLILGTO | GTLDHGGALT                                      |
| С  | MQTA                    | -YWVMVMMV                                                   | GITA-PLSEG | <u> </u>                                        |
| D  | MPKLE                   | -MMLLV <mark>LL</mark> IL                                   | PLSYFDAAGO | <u> </u>                                        |
| I1 | -MVIMKLC                | -LTFL <mark>L</mark> ILMI                                   | LPLVTG     | G                                               |
| I2 | MMFRLT                  | SVSCFLLVIV                                                  | CLNLVVLVNA | ·                                               |
| IЗ | MKLV                    | -LAIVLILML                                                  | LSLSTG     | GA                                              |
| J  | -MPSVRSV                | TCCCLLWMML                                                  | SVQLVTPGSE | ?                                               |
| K  | MI <mark>M</mark> RMT   | -LTLFV <mark>L</mark> VVM                                   | TAAS-ASG   | <u> </u>                                        |
| L  | MNVTVM                  | -FLVL <mark>LLL</mark> TM                                   | PLTDG      | <u> </u>                                        |
| М  | MMSKLGVL                | -MLFIF <mark>L</mark> VLF                                   | PLAT-LQLDA | ·                                               |
| 01 | M <mark>M</mark> KLT    | -CVLIVAVLF                                                  | LT-ACQLITA | ADDSA                                           |
| 02 | MEKLT                   | -ILLLVAAVL                                                  | MS-TQALVQS | S                                               |
| 03 | -MSGLGIM                | -VLTL <mark>LLL</mark> VF                                   | MATS-HQDGO | <u> </u>                                        |
| Ρ  | MHLSLARS                | -AVLI <mark>LLL</mark> LF                                   | ALGNFAVVQS | S                                               |
| S  | MMLK <mark>M</mark> G   | -AMFV <mark>LLL</mark> LF                                   | TLASSQQ    | 2                                               |
| Т  | MRCL                    | -PVFII <mark>LL</mark> LL                                   | IASA-PSVDA | ·                                               |
| V  | MM                      | -PVILP <mark>LL</mark> LS                                   | LAIR-GGDG- |                                                 |
| Y  | <mark>M</mark> QKA      | -TVLL <mark>L</mark> AL                                     | LLPLSTA    |                                                 |
| Q  | MHTLE                   | -MLLL <mark>LLL</mark> LL                                   | PLAPG-     |                                                 |

Figure S2. Alignment of consensus signal peptide sequences of different superfamilies. The consensus sequences were composed by most frequently appeared amino acid residues in each position.



SEQ: CCSDPPCRHKHQDLC, Carb(C1) Carb (C2) Carb(C7) Carb (C15) Amidation (C-term), Charge:3, MH+: 1968.7996, Score: 4.03e-011

Figure S3. MS/MS spectrum of fla1a, CCSDPPCRHKHQDLC (C-term amidation). The red peaks are speculated assignments with neutral loss of iodoacetamide radical (CHCONH<sub>2</sub>, 57.02146) from the side chain of C-terminal iodoacetamide cysteine, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: GCCSDPPCRHKHQDLC, Carb(C2) Carb (C3) Carb(C8) Carb (C16) Amidation (C-term), Charge:3, MH+: 2025.8185, Score: 3.92e-011

Figure S4. MS/MS spectrum of fla1b, GCCSDPPCRHKHQDLC (C-term amidation).



SEQ: ACNPPCSDILTCLHGTCKHLGI, Carb(C2) Carb (C6) Carb(C12) Carb (C17) Amidation (C-term), Charge: 4, MH+: 2523.1657, Score: 8.90e-043

Figure S5. MS/MS spectrum of fla14a, ACNPPCSDILTCLHGTCKHLGI (C-term amidation).



SEQ: ACNPPCSDILTCLHGTCKHLGI, Carb(C2) Hydroxylation (P5) Carb (C6) Carb(C12) Carb (C17) Amidation (C-term), Charge:4, MH+: 2539.1588, Score: 1.82e-042

Figure S6. MS/MS spectrum of fla14b, ACNPPCSDILTCLHGTCKHLGI (hydro(P5), C-term amidation), orange "P" indicates P with hydroxylation.



SEQ: ACNPPCSDILTCLHGTCKHLGI, Carb(C2) Hydroxylation (P4) Hydroxylation (P5) Carb (C6) Carb(C12) Carb (C17) Amidation (C-term), Charge:4, MH+: 2523.1657, Score: 8.90e-043

Figure S7. MS/MS spectrum of fla14c, ACNPPCSDILTCLHGTCKHLGI (hydro(P4, P5), C-term amidation), orange "P" indicates P with hydroxylation.



SEQ: TCYPPCIGYTYCKSGTCEYRQ, Carb(C2) Carb (C6) Carb(C12) Carb (C17) Amidation (C-term), Charge:3, MH+: 2663.1040, Score: 1.56e-051

Figure S8. MS/MS spectrum of fla14d, TCYPPCIGYTYCKSGTCEYRQ (C-term amidation).



SEQ: CCSKYCWECTPCCPYSS, Carb(C1) Carb (C2) Carb(C6) Carb (C9) Hydrxoylation(P11) Carb(C12) Carb (C13) Amidation (C-term), Charge:2, MH+: 2319.7952, Score: 2.28e-022

Figure S9. MS/MS spectrum of fla3a, CCSKYCWECTPCCPYSS (hydro(P11), C-term amidation), orange "P" indicates P with hydroxylation. The red peaks are speculated assignments to the breakdown of N-Cα of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: RCCLWPACWGCVCCY, Carb(C2) Carb (C3) Carb(C8) Carb (C11) Carb(C13) Carb (C14), Charge:2, MH+: 2107.7830, Score: 6.19e-026

Figure S10. MS/MS spectrum of fla3b, RCCLWPACWGCVCCY. The red peak is speculated assignment to the breakdown of N-C $\alpha$  of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: RCCLWPECGGCVCCY, Carb(C2) Carb (C3) Carb(C8) Carb (C11) Carb(C13) Carb (C14), Charge:2, MH+: 2036.7292, Score: 3.91e-024

Figure S11. MS/MS spectrum of fla3c, RCCLWPECGGCVCCY. The red indicated peaks are speculated assignments to the breakdown of N-Cα of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: RCCLWPECGGCVCCY, Carb(C2) Carb (C3) Gala (E7) Carb(C8) Carb (C11) Carb(C13) Carb (C14), Charge:2, MH+: 2080.7210, Score: 5.38e-016

Figure S12. MS/MS spectrum of fla3d, RCCLWPECGGCVCCY (Gla(E7)). The red peaks are speculated assignments to the breakdown of N-Cα of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: EWTDFRPW, Amidation (C-term), Charge:2, MH+: 1135.5289, Score: 1.77e-013

Figure S13. MS/MS spectrum of fla01, EWTDFRPW (C-term amidation).



SEQ: EWTDFRPW, Gala(E1) Amidation (C-term), Charge:2, MH+: 1179.5192, Score: 3.18e-018

Figure S14. MS/MS spectrum of fla02, EWTDFRPW (Gla(E1), C-term amidation). There is a neutral loss of CO<sub>2</sub> from gamma carboxyglutamic acid Gla1.



Figure S15. MS/MS spectrum of fla03, GGLGHAGGWVKAGALG. The c ion formation in CID experiment was previously reported by reference: Farrugia JM, O'Hair RAJ, Reid GE (2001). Do all b2 ions have oxazolone structures? Multistage mass spectrometry and ab initio studies on protonated N-acyl amino acid methyl ester model systems. Int. J. Mass Spectrom. 210, 71-87.



SEQ: GGLGHAGGWVKAGALGKDPGW, Amidation (C-term), Charge:3, MH+: 1990.0303, Score: 3.48e-017

Figure S16. MS/MS spectrum of fla04, GGLGHAGGWVKAGALGKDPGW (C-term amidation). The c ion formation in CID experiment was previously reported by reference: Farrugia JM, O'Hair RAJ, Reid GE (2001). Do all b2 ions have oxazolone structures? Multistage mass spectrometry and ab initio studies on protonated N-acyl amino acid methyl ester model systems. Int. J. Mass Spectrom. 210, 71-87.



SEQ: GGLGHAGGWVKAGALGKDPGW, Charge:4, MH+: 1991.0250, Score: 1.99E-026

Figure S17. MS/MS spectrum of fla05, GGLGHAGGWVKAGALGKDPGW. The c ion formation in CID experiment was previously reported by reference: Farrugia JM, O'Hair RAJ, Reid GE (2001). Do all b2 ions have oxazolone structures? Multistage mass spectrometry and ab initio studies on protonated N-acyl amino acid methyl ester model systems. Int. J. Mass Spectrom. 210, 71-87.



SEQ: LGHAGGWVKAGALGKDPGW, Amidation (C-term), Charge:4, MH+: 1875.9901, Score: 5.49e-012

Figure S18. MS/MS spectrum of fla06, LGHAGGWVKAGALGKDPGW (C-term amidation).



SEQ: HAGGWVKAGALGKDPGW, Amidation (C-term), Charge:3, MH+: 1705.8867, Score: 7.44e-020

Figure S19. MS/MS spectrum of fla07, HAGGWVKAGALGKDPGW (C-term amidation).



SEQ: SCGHSGAGCYTRPCCPGLHCSGGQAGGLCV, Carb (C2) Carb (C9) Carb (C14) Carb (C15) Carb (C20) Carb (C29), Charge:3, MH+: 3180.2563, Score: 3.00e-021

Figure S20. MS/MS spectrum of fla6a, SCGHSGAGCYTRPCCPGLHCSGGQAGGLCV. The c ion formation in CID experiment was previously reported by reference: Farrugia JM, O'Hair RAJ, Reid GE (2001). Do all b2 ions have oxazolone structures? Multistage mass spectrometry and ab initio studies on protonated N-acyl amino acid methyl ester model systems. Int. J. Mass Spectrom. 210, 71-87.



SEQ: SCGHSGAGCYTRPCCPGLHCSGGQAGGLCV, Carb (C2) Carb (C9) Hydroxylation (P13) Carb (C14) Carb (C15) Carb (C20) Carb (C29), Charge:3, MH+: 3196.2557, Score: 6.22e-018

Figure S21. MS/MS spectrum of fla6b, SCGHSGAGCYTRPCCPGLHCSGGQAGGLCV (Hydroxylation of P13). The c ion formation in CID experiment was previously reported by reference: Farrugia JM, O'Hair RAJ, Reid GE (2001). Do all b2 ions have oxazolone structures? Multistage mass spectrometry and ab initio studies on protonated N-acyl amino acid methyl ester model systems. Int. J. Mass Spectrom. 210, 71-87.



SEQ: SCGHSGAGCYTRPCCPGLHCSGGQAGGLCV, Carb (C2) Carb (C9) Hydroxylation (P13) Carb (C14) Carb (C15) Hydroxylation (P16) Carb (C20) Carb (C29), Charge:3, MH+: 3212.2467, Score: 5.08e-009

Figure S22. MS/MS spectrum of fla6c, SCGHSGAGCYTRPCCPGLHCSGGQAGGLCV (hydroxylation of P13 and P16).



SEQ: TCDPPGDSCSRWYNHCCSKLCTSRNSGPTCSRP, Carb (C2) Hydroxylation (P5) Carb (C9) Carb (C16) Carb (C17) Carb (C21) Hydroxylation (P28) Carb (C30), Charge:6, MH+: 3992.5991, Score: 6.49e-011

Figure S23. MS/MS spectrum of fla6d, TCDPPGDSCSRWYNHCCSKLCTSRNSGPTCSRP (hydroxylation of P5 and P28), P marked in red indicates hydroxylated proline.



SEQ: ALCCYGYAFCCRL, Carb (C3) Carb (C4) Carb (C10) Carb (C11) Amidation (C-term), Charge:2, MH+: 1712.7104, Score: 1.24e-031

Figure S24. MS/MS spectrum of fla5a, ALCCYGYAFCCRL (C-term amidation). The red peak is speculated assignment to the breakdown of N-C $\alpha$  of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: LCCYGYAFCCRL, Carb (C2) Carb (C3) Carb (C9) Carb (C10) Amidation (C-term), Charge:2, MH+: 1641.6746, Score: 1.24e-030

Figure S25. MS/MS spectrum of fla5b, LCCYGYAFCCRL (C-term amidation). The red peak is speculated assignment to the breakdown of N-Cα of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



SEQ: ALCCYGYRFCCPN, Carb (C3) Carb (C4) Carb (C10) Carb (C11), Charge:2, MH+: 1740.6666, Score: 1.71e-012

Figure S26. MS/MS spectrum of fla5d, ALCCYGYRFCCPN. The red peak is speculated assignment to the breakdown of N-C $\alpha$  of cysteine residue, which was reported previously by reference: Asakawa D, Smargiasso N, Quinton L, De Pauw E. (2013) Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. J Mass Spectrom. 48(3): 352-360.



Figure S27. Clone numbers of 57 non-redundant mature peptides identified in the cDNA libraray of *C. flavidus*. The sequences with corresponding peptide components being identified in MS/MS analysis are shown in columns with meshy pattern.

|           | 10 20                                                            | 30                                  | 40                                | 50                               | 60 7                    | 0 80                           | 90 100               |
|-----------|------------------------------------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|-------------------------|--------------------------------|----------------------|
| A E126 1  |                                                                  | <br>CTTCATTCOME                     | .  <br>%caccamecc                 | - I I                            | -      <br>TGGATCATCCAC |                                | ···· ···· ····       |
| A.1140.1  |                                                                  | T. D. W                             | D D A                             | D F L                            | V D H P                 | E L G                          | - 1888<br>W          |
| 01.Fla6.4 |                                                                  | TCOXS                               | ¢ggacatagt                        |                                  | GGT0                    | CAGGTTGT                       | TATACTC              |
|           |                                                                  | s //¢                               | GHS                               |                                  | G                       | A G                            | У Т                  |
| 01.Fla6.5 | ATGAGGAATCCCAAGCTCTCCAAGTTG                                      | ACAAAGACOPS                         | TGATCCACCC                        |                                  | GGT0                    | ACAGTTCCTC                     | FAGGTGGTATA          |
|           | M R N P K L S K L                                                | ткт 🌾                               | DPP                               |                                  | G                       | d s 🖉 s                        | R W Y                |
| 01.Fla6.6 |                                                                  | %                                   | CTATGATGTG                        |                                  | GGT0                    | ATTTTECEGG                     | CATACCGTTTATTAAGAACG |
|           |                                                                  | //\$                                | Y D V                             |                                  | G                       | D F 🦉 G                        | IPFIKN               |
| 01.Fla6.7 |                                                                  | GATTG                               | CACTCCTCCG                        |                                  | TCC#                    | GTTAT <b>TGT</b> GA            | ITACCCTG             |
|           |                                                                  | D //S                               | TPP                               |                                  | S                       | S Y 🖉 D                        | Y P                  |
| V.Fla6.9  |                                                                  | GGT%                                | CTCC                              |                                  |                         | ATTTGC                         | AATGGAG              |
|           |                                                                  | G //9                               | s                                 |                                  |                         | I                              | N G                  |
| V.F1a6.12 |                                                                  | AAGACGGAT/2G                        | CTAC                              |                                  |                         | AAT PGC                        | GATGGAG              |
| W P1-C 12 |                                                                  | K T D C                             | 1 Y                               |                                  |                         | n ga                           | D G                  |
| V.F180.13 |                                                                  | AAGACGGAI/PG                        | CTTC                              |                                  |                         |                                | AATGGAG              |
| 0 5126 14 |                                                                  |                                     | encacca                           |                                  |                         | Webcco                         | N G                  |
| Q.1140.14 |                                                                  | 11/2                                | T D                               |                                  |                         |                                |                      |
|           |                                                                  | 1177.                               | »                                 |                                  |                         | <i>171/1,</i> C                | *                    |
|           |                                                                  |                                     |                                   |                                  |                         |                                |                      |
|           |                                                                  |                                     | .                                 | .                                |                         |                                | ,<br>                |
| A.Fla6.1  | ACGTATGC/PG/PGCCTATCCTCCC/                                       | TAGACACAAA                          | CACCAA                            |                                  | GAT                     | TAATCAG                        |                      |
|           | DV C AYP P                                                       | 🖉 к н к                             | H Q                               |                                  | D ///                   | N Q                            |                      |
| Ol.Fla6.4 | GCCCTTCCTCCCCGGTCTGCATT                                          | ¢¢tctggcggc                         | CAAGCTGGAG                        | GC                               | CTG#C                   | ¢gtg                           |                      |
|           | R P C P G L H                                                    | 🖉 s g g                             | Q A G                             | G                                | L //                    | v                              |                      |
| 01.Fla6.5 | ATCATTGCTGCAGTAAGTTGT                                            | GPACTTCACGG                         | AATAGCGGGC                        | CA                               | ACT/20                  | CTCGCGCCCA-                    |                      |
|           | NHOCSK L                                                         | C T S R                             | N S G                             | P                                | т //                    | SRP                            |                      |
| 01.Fla6.6 | GCAATTGCTGCAGTCAGTTTT                                            | GØGTTTTT                            |                                   |                                  | GTC7                    | CACACCCGAG                     | rgg                  |
|           | G N C S Q F                                                      | V F                                 |                                   |                                  | v ///                   | T P E                          | W                    |
| 01.F1a6./ | AGGAADGPDGDGAGTAGAA2                                             | C D U                               |                                   |                                  | TACEC                   | CGATTGG                        | rGG                  |
| W E1-C 0  | E E Q Q E V E                                                    | С G К Н                             |                                   |                                  | ¥ //                    |                                | W                    |
| V.F140.9  | GACAAPSC/D0/DGC11G2                                              | COLIGIACICI                         | CGGATTATAT                        | CGAGATAT                         | AIG20                   | I D V                          | ) V                  |
| V F1a6 12 | ANGAN CONTRACT                                                   | decremence                          | T I I                             | ACATCTTT                         | >                       | PCTAACACTT                     | A A A                |
|           | E E E E G G R                                                    |                                     | W P T.                            | 0 M F                            | T M                     | V T V                          | EK                   |
| V.Fla6.13 |                                                                  | <i>~//. – – – –</i>                 |                                   | * ** *                           | - 777                   | // · · ·                       |                      |
|           | TATATTSCZCCACTGGZ                                                | GCATATACTOT                         | GCGGCTGAAG                        | AGAGGCTC                         | AA 1990                 | TGTAAATCOT                     | IGGAAA               |
|           | TATATTSCTGTCACTGGT<br>V Y C C H W                                | GCATATACTCT<br>C I Y S              | GCGGCTGAAG<br>A A E               | AGAGGCTC<br>E R L                | AATTC                   | TGTAAATCCT<br>V N P            | IGGAAA<br>W K        |
| Q.Fla6.14 | TATATTSCTGTCACTGGT<br>V Y C C H W<br>ATCTCTGCTSCGAGCCTGGAACAACAT | GCATATACTCT<br>I Y S<br>GTGACAGAGTG | GCGGCTGAAG<br>A A E<br>TTGCATCACA | AGAGGCTC<br>E R L<br>.CGCATTTTGG | AATTO<br>N CGAGCCTTCGTO | TGTAAATCCT<br>V N P<br>TTCATAT | rggaaa<br>W K        |

Figure S28. Alignment of conotoxins with cysteine framework VI/VII from different superfamilies of C. flavidus.