SUPPORTING INFORMATION FOR:

High Titer Heterologous Production of Lyngbyatoxin in *E. coli*, a Protein Kinase C Activator from an Uncultured Marine Cyanobacterium

Sarah E. Ongley[†], Xiaoying Bian[‡], Youming Zhang[§], Rocky Chau[†], William H. Gerwick^{II}, Rolf Müller^{‡*}, Brett A. Neilan^{†*}

[†] School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.

 [‡] Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken 66041, Germany.
[§] Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, P. R. China.

^{II} Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla 92093, USA.

	$\delta_{\rm H}$ (multiplicity, J=Hz)	
No.	conformer A^{\dagger}	conformer B [†]
2	7.11 (s)	6.94 (s)
5	6.95 (dd, 7.4, 0.8)	6.44 (dd, 7.4, 0.8)
6	7.06 (t, 7.7, 7.7)	6.95 (t, 7.8, 7.8)
7	7.28 (dd, 8.0, 1.2)	6.88 (dd, 8.2, 1.0)
8	2.88 (dd, 14.3, 1.6)	3.04 (dd, 14.3, 1.6)
	3.03 (dd, 14.3, 1.6)	3.09 (m)
9	4.24 (m)	2.24 (m)
12	3.09 (m)	4.49 (d, 10.2)
14	3.22 (dd, 11.2, 6.9)	3.46 (dd, 11.2, 9.1)
	not observed*	3.62 (dd, 11.2, 4.6)
15	2.31 (dquin, 11.0, 6.6x4)	2.55 (dquin, 10.2, 6.6x4)
16	0.9 (d, 6.5)	0.61 (d, 6.7)
17	1.25 (d, 6.7)	0.89 (d, 6.4)
18	2.71 (s)	2.89 (s)

Supplementary Table 1: ¹H (300 MHz) NMR data for ILV, 2

*Signal was obscured by the solvent peak. [†]Two conformational states are observed for ILV.

NMR spectra were obtained using the Bruker Avance III 300 system in MeOH-d₄ (CD₃OD), and the solvent peak was used as an internal standard ($\delta_{\rm H}$ 3.31).

No.	$\delta_{\rm H}$ (multiplicity, J=Hz)	
1	not observed	
2	6.91 (s)	
5	6.47 (d, 8.0)	
6	6.93 (d, 8.0)	
8	3.10 (dd, 17.4, 2.3)	
	2.05 (dd, 17.4, 3.7)	
9	4.29 (s)	
10	not observed	
12	4.42 (d, 10)	
14	3.65 (dd, 11.0, 4.7)	
	3.6 (dd, 11.0, 4.7)	
15	2.54 (m)	
16	0.88 (d)	
17	0.63 (d)	
18	2.84 (s)	
20	1.46s)	
21	6.13 (ddd, 17.6, 10.7, 4.8)	
22	5.13 (dd, 10.7)	
	5.07 (dd, 17.6)	
23	1.81 (td, 13.2, 13.2, 4.9)	
	1.74 (ddd, 13.2, 11.8, 4.9)	
24	2.02 (br m)	
	1.61 (m*)	
25	5.01 (br m)	
27	1.47 (s)	
28	1.58 (br s)	

Supplementary Table 2: ¹H (600 MHz) NMR data for LTX, 1

*Signal was obscured by an adjacent peak.

NMR spectra were obtained using the Bruker Avance III 600 system in MeOH- d_4 (CD₃OD), and the solvent peak was used as an internal standard (δ_H 3.31).

Supplementary Figure 1. HPLC analysis of crude *E. coli* extracts grown at 30°C. Solvent gradient 5-95% acetonitrile over 30 min. No production was observed at 30°C. Ten micrograms each of LTX and ILV standards (indicated with red arrows) were injected.

Supplementary Figure 2. LC-MS total ion count chromatogram of tetracyclineinduced *E. coli* pCC-Ptet-ltx fermentation crude methanol extracts. Clear differences between the induced and uninduced cultures are indicated with red arrows.

Supplementary Figure 3a. LC-MS/MS of tetracycline-induced *E. coli* pCC-Ptet-ltx fermentation crude methanol extract. Upper window, full spectra (0-1000 m/z) at retention time 3-4 min; Lower window, secondary ionization of $304.2 \pm 0.5 m/z$.

Supplementary Figure 3b. LC-MS/MS of tetracycline-induced *E. coli* pCC-Ptet-ltx fermentation crude methanol extract. Upper window, full spectra (0-1000 m/z) at retention time 7-8 min; Lower window, secondary ionization of $302.2 \pm 0.5 m/z$.

Supplementary Figure 3c. LC-MS/MS of tetracycline-induced *E. coli* pCC-Ptet-ltx fermentation crude methanol extract. Upper window, full spectra (0-1000 m/z) at retention time 13-14 min; Lower window, secondary ionization of $438.31 \pm 0.5 m/z$.

Supplementary Figure 4. HPLC analysis of crude *E. coli* extracts of tetracycline induced pCC-Ptet-ltx (3 replicates), uninduced pCC-Ptet-ltx and wild-type ltx gene cluster cultures cultivated at 18°C. Solvent gradient 5-95% acetonitrile over 30 min. Ten micrograms each of LTX and ILV standards (indicated with red arrows) and 2% of the crude extracts were injected. The peak corresponding to NVMT is indicated with a red arrow in the induced samples.

Supplementary Figure 5. Standard curves for quantification of (A) ILV ($R^2 = 0.998$) and (B) LTX ($R^2 = 0.981$) by HPLC. Each data point represents the average of at least two experiments.

Supplementary Figure 6. Zoomed HR-ESI-MS spectra showing presence of ions indicative of the presence of lyngbyatoxin B or C isoforms. The experimental lyngbyatoxin B/C molecular ion isotope distribution for peaks corresponding to the expected is shown, (A) 454.31 $[M+H]^+$, (B) 455.31 $[M+H]^+$, (C) 456.31 $[M+H]^+$. In all instances the top pane is uninduced, followed by triplicate induced cultures.

Supplementary Figure 7. SDS-PAGE of *E. coli* soluble protein fractions. M, broad range protein marker (2-212 kDa) (New England Biolabs); 1, uninduced GB05-MtaA pCC-Ptet-ltx; 2, tetracycline-induced GB05-MtaA pCC-Ptet-ltx on an Invitrogen NuPAGE Novex 3-8% Tris-Acetate 1.0 mm gel. Arrows indicate the band corresponding to LtxA. Protein identity was confirmed by LC-MS/MS analysis of the excised and tryptic digested protein band, with assignment as LtxA by MASCOT using the NCBI nr protein database.

Supplementary Figure 8. Strategy for insertion of the tetracycline-inducible promoter (P_{tetO}) cassette Genta^R-TetR- P_{tetO} , consisting of gentamicin resistance (*aacC1*), tetracycline repressor (*tetR*) and P_{tetO} by recombineering using 40 nt homology arms to upstream of *ltxA* and to *ltxA* coding sequence (including the start codon).