SUPPORTING INFORMATION

Synthesis and Chemical and Biological Comparison of Nitroxyl and Nitric Oxide Releasing Diazeniumdiolate-based Aspirin Derivatives

Debashree Basudhar,¹ Gaurav Bharadwaj,¹ Robert Y. Cheng,² Sarthak Jain,³ Sa Shi,^{4,5} Julie L. Heinecke,² Lisa A. Ridnour,² Viviane M. Caceres,^{4,6} Ryan J. Holland,⁷ Regina C. Spadari-Bratfisch,⁶ Nazareno Paolocci,^{4,8} Carlos A. Velázquez-Martínez,³ David A. Wink² and Katrina M. Miranda^{1,*}

¹Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, ²Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, ³Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada, ⁴Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, ⁵Department of Pathophysiology,
Harbin Medical University, Harbin, 150081, China; ⁶Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil, ⁷Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702,
⁸Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy

S1

Table of contents

NMR spectra of products generated on hydrolysis of IPA/NO-aspirin	
after 24 h at pH 10	S3
NMR spectra of products generated on hydrolysis of DEA/NO-aspirin	
after 90 h at pH 10	S4
Assessment of compound purity by HPLC	S5-S7

Figure S1. NMR spectra of products generated on hydrolysis of IPA/NO-aspirin after 24 h at pH 10 and 37 °C.

The hydrolysis products of IPA/NO-aspirin were examined by NMR at pH 10 after 24 h of incubation. Accumulation of isopropanol (δ 1.18), formaldehyde (4.86), salicylate (δ 6.89-6.91, 7.39-7.42, 7.72-7.74) and acetate (δ 1.91) is evident. Notably the hydrolysis was complete as apparent from the lack of linker -OCH₂O- protons peak at around 6 ppm. A lack of acetyl CH₃ protons (δ 2.33) suggests negligible accumulation of aspirin. The near lack of isopropylamine (δ 1.07), the byproduct of the NO forming pathway (Scheme 1), indicates decomposition of IPA/NO-aspirin primarily by the pathway involving deprotonation of the amine (Scheme 3).

Figure S2. NMR spectra of products generated on hydrolysis of DEA/NO-aspirin after 90 h at pH 10 and 37 °C.

DEA/NO decomposes at pH 10 to produce peaks at 4.17, 3.72, 1.38, 1.27, and 1.12 ppm. These peaks are also present in the NMR spectrum collected after 90 h hydrolysis of DEA/NO-aspirin at pH 10, signifying release of free DEA/NO. The 1.9 ppm peak indicates hydrolysis of the acetyl ester to form acetate. Moreover small peaks for the OCH₂O linker (6.13 ppm) and acetyl group (2.41 ppm) of DEA/NO-aspirin were still present, suggesting incomplete hydrolysis. Although the peak at 2.33 ppm hints at the presence of aspirin, the overlapping peaks in the aromatic region hampers assignment of DEA/NO-salicylate, aspirin or salicylate.

Assessment of compound purity by HPLC

Compounds **3** and **6-8** were determined by HPLC to have a purity of >95%, and thus were used for subsequent biological assays. The HPLC spectra are provided below.

Column: Phenomenex Luna C18 column, 3 μ m, 150 × 2.1 mm; mobile phase: water and acetonitrile gradient containing 0.1% formic acid; wavelength: 265 nm; rate: 0.2 mL/min; temperature: 30 °C

Compound 6, 97.4%

Compound 7, 97.6%

Compound 8, 99.2%

