Supplementary Material

Structure of BIRC7–E2 ubiquitin conjugate reveals the mechanism of ubiquitin

transfer by a RING dimer

Hao Dou, Lori Buetow, Gary J. Sibbet, Kenneth Cameron and Danny T. Huang

Table of Contents

Item	Page
Supplementary Figure 1. Surface plasmon resonance analyses of UbcH5B and UbcH5B _s ~Ub variants binding to dimeric RING variants	2-3
Supplementary Figure 2. Additional in vitro ubiquitination assays	4-5
Supplementary Figure 3. Similar E2–Ubl tail interactions	6
Supplementary Figure 4. BIRC7 dimerization	7
Supplementary Figure 5. Mapping of Ub interactions by NMR	8-10
Supplementary Figure 6. Effects of BIRC3, UbcH5B and Ub mutations on ubiquitination activity.	11
Supplementary Figure 7. Models of dimeric E3–UbcH5B~Ub complexes	12
Supplementary Methods	
Protein preparation	13-14
Structural determination	14
Single turnover kinetics of di-Ub formation	15
Supplementary References	16

Supplementary Figure 1 Surface plasmon resonance analyses of UbcH5B and UbcH5B_s~Ub variants binding to dimeric RING variants. Representative sensorgrams (left) and binding curves (right) for GST-RING E3 variants with UbcH5B (**a**), UbcH5B_s~Ub (**b**), GST-BIRC7_{FL} with UbcH5B_s~Ub variants (**c**), GST-BIRC7_{FL} variants with UbcH5B_s~Ub (**d**), as indicated. GST-ligands and analytes are indicated above the sensorgrams and binding curves. The number of replicates is indicated in the binding curve.

Supplementary Figure 2 Additional *in vitro* ubiquitination assays. (a) Autoubiquitination of BIRC7 occurs in di-Ub formation assays. Western blot from *in vitro* di-Ub formation assay with wild-type BIRC7, UbcH5B and Ub under pulsechase conditions. (b) Autoubiquitination of BIRC7 occurs in SMAC-ubiquitination assays. Ub_n, Ub chain of length *n*. Left: Non-reduced autoradiogram of SMAC ubiquitination showing the simultaneous disappearance of UbcH5B \sim ³²P-Ub and the formation of BIRC7–Ub_n and SMAC–Ub_n over time with wild-type UbcH5B, BIRC7 and ³²P-Ub under pulse-chase conditions. Right: Non-reduced autoradiogram showing the formation of ³²P-SMAC–Ub_n over time run under conditions identical to those in the left panel but with ³²P-SMAC and unlabeled Ub. (c) SDS-PAGE showing 2 µg of purified UbcH5B variants. Molecular weight standard is indicated. (d) Non-reduced autoradiograms of pulse-chase reactions showing the simultaneous formation of ³²P-Ub products and disappearance of UbcH5B~³²P-Ub with full-length BIRC7 and UbcH5B variants over time. An asterisk indicates the E1~Ub band. (e) Non-reduced autoradiogram showing the formation of ³²P-SMAC–Ub_n over time as in **b** but with UbcH5B variants. (f) Non-reduced SDS-PAGE of pulse-chase reactions showing the simultaneous formation of ³²P-Ub products and disappearance of UbcH5B~³²P-Ub with full-length BIRC7, UbcH5B and Ub variants over time. (g) Non-reduced autoradiogram showing the formation of ³²P-SMAC–Ub_n over time as in **b** but with Ub variants.

Supplementary Figure 3 E2–Ub tail interactions. (**a**) Close-up view of the active site from a structural alignment of UbcH5B from PDB 3A33 (colored yellow) and BIRC7_{239-C}–UbcH5B_{RAS}~Ub (colored cyan). Gly76 and N77A from BIRC7_{239-C}– UbcH5B_{RAS}~Ub and Asn77 from PDB 3A33 are shown as sticks. (**b**) Movement of UbcH5B loop (114-119). Ribbon diagrams of structural alignments of the C α atoms of UbcH5B from BIRC7_{239-C}–UbcH5B_{RAS}~Ub (colored cyan) with available structures of UbcH5B variants (conjugated and unconjugated) from the Protein Data Bank in grey. The catalytic Cys is shown in sticks. (**c-e**) Similar E2–Ubl tail interactions. (**c**) Structural alignment of UbcH5B from our structure with Ubc9 in the post-conjugation SUMO–RanGAP1–Ubc9–Nup358 complex structure (PDB 1Z5S¹). E2s are colored cyan, E3s green, Ub wheat, SUMO blue, and RanGAP1 red. (**d**) Close-up view of the Ub tail–UbcH5B interactions in BIRC7_{239-C}–UbcH5B_{RAS}~Ub. (**e**) Close-up view of the SUMO tail–Ubc9 interactions in SUMO–RanGAP1–Ubc9–Nup358. For **d** and **e**, atoms are colored as in **Fig. 2**.

Supplementary Figure 4 BIRC7 dimerization. (**a**) Gel filtration chromatograms of full-length BIRC7 variants. Purified BIRC7 variants (120 μ g) were passed over an analytical Superdex 75 10/300 (GE Healthcare). (**b**) Close-up view of the BIRC7 RING–RING dimerization interface in BIRC7_{239-C}–UbcH5B_{RAS}~Ub complex.

Supplementary Figure 5 Mapping of Ub interactions by NMR. (a) Chemical shift perturbation data for Ub in UbcH5B_{RAS}~Ub interactions. ${}^{1}H{-}^{15}N$ HSQC spectra for

¹⁵N-Ub alone (black) and in the covalent UbcH5B_{RAS}~¹⁵N-Ub complex (red). Numbers indicate Ub residues in ¹⁵N-Ub alone. (**b**) Chemical shift perturbation data for Ub in BIRC7–UbcH5B~Ub interactions. ¹H–¹⁵N-HSQC spectra for UbcH5B_{RAS}~¹⁵N-Ub in the absence (red) and presence (blue) of BIRC7_{239-C}. Numbers indicate Ub residues in UbcH5B_{RAS}~¹⁵N-Ub complex. (**c**) ¹H–¹⁵N-HSQC spectra for ¹⁵N-Ub alone (black), UbcH5B_{RAS}~¹⁵N-Ub (red) and UbcH5B_{RAS}~¹⁵N-Ub in the presence of BIRC7_{239-C} (blue). (**d**) Expanded regions of the ¹H–¹⁵N HSQC spectra for Ub alone (100 µM, black), in the covalent UbcH5B_{RAS}~Ub complex (100 µM, red), and in the covalent UbcH5B_{RAS}~Ub complex (100 µM) with BIRC7_{239-C} (100 µM, green) and in the covalent UbcH5B_{RAS}~Ub complex (200 µM) with BIRC7_{239-C} (300 µM, blue). (**e**) Changes in chemical shift per residue of ¹⁵N-Ub following covalent linkage to UbcH5B_{RAS} (red) and subsequent addition of 1.5-fold molar excess of BIRC7_{239-C} (blue) determined by ¹H–¹⁵N HSQC NMR. Changes were calculated according to the equation [(0.15 δ_N)² + δ_H^2]^{1/2}. sc indicates a perturbation in a sidechain NH group. Arrows indicate shift in peaks.

Supplementary Figure 6 Effects of BIRC3, UbcH5B and Ub mutations on ubiquitination activity. (**a**) Single turnover kinetics of di-Ub formation catalyzed by BIRC7_{239-C}. UbcH5B was charged with ³²P-Ub followed by addition of apyrase and EDTA to stop E1-catalyzed reaction. Various UbcH5B~³²P-Ub concentrations were chased with a molar excess of His-Ub in the presence of BIRC7_{239-C}. A representative reduced autoradiogram of di-Ub formation is shown. (**b**) Close-up of BIRC7_A– UbcH5B_A interactions. (**c**) Close-up of BIRC3–UbcH5B interactions in PDB 3EB6². **b**,**c** are colored as in **Figs. 1** and **2**. (**d**) Non-reduced SDS-PAGE of pulse-chase reactions showing the disappearance of UbcH5B~Ub with BIRC3_{541-C}, L-lysine, and UbcH5B variants over time. (**e**) As in **d** but with Ub variants. (**f**) Single turnover kinetics of di-Ub formation catalyzed by BIRC3_{239-C}, UbcH5B and Ub variants. Reactions were performed as in **a**. Representative reduced autoradiograms of di-Ub formation are shown. Final UbcH5B and E3 concentrations are indicated in **a** and **f**.

Supplementary Figure 7 Models of dimeric E3–UbcH5B~Ub complexes. (a) Left: BIRC7 dimer portion from $BIRC7_{239-C}$ –UbcH5B_{RAS}~Ub. Middle: BIRC7 dimer– UbcH5B_A~Ub_A from $BIRC7_{239-C}$ –UbcH5B_{RAS}~Ub, rotated 70° from view on left. Right: Close-up view of cross-dimer interactions with Ub from boxed area in middle panel with key residues shown as sticks. (b-d) Left: Cartoon representations of E3 dimers generated by structural alignment with the BIRC7 dimer. One subunit is colored green and the second yellow. Middle: Models of UbcH5B~Ub bound to E3 dimers. The green subunits were superimposed onto BIRC7_A to generate these models. Right: Close-up view of E3 dimer interactions with Ub from boxed area of models in the middle panel with key residues shown as sticks. Coloring is as described in **Figs. 1** and **2**.

Supplementary Methods

Protein preparation

Constructs were generated by standard PCR-ligation techniques and sequences verified by automated sequencing. All proteins are from human unless specified. BIRC3541-C variants, BIRC7239-C, full-length BIRC7 variants, RNF21-114 and MDM2428-C were cloned into pGEX4T1 (GE Healthcare) which contains an N-terminal glutathione S-transferase (GST) tag followed by a TEV protease cleavage site. BMI1₁ 109 and MDMX_{428-C} were cloned into pRSF_DUET (Novagen) which contains an Nterminal His-tag followed by a TEV protease cleavage site. Untagged UbcH5B variants were cloned into pRSF_1b vector. Proteins were expressed in E. coli BL21 (DE3) Gold. For crystallization, BIRC7_{239-C} was purified by glutathione-affinity chromatography, treated with TEV protease to cleave the GST-tag, and further purified by desalting/glutathione-affinity pass-back and size exclusion chromatography. For ubiquitination assays, BIRC3 and BIRC7 variants were expressed and purified as described previously except cleavage was performed on glutathione sepharose beads and the pass-back step omitted. For Biacore analyses, GST-tagged BIRC3_{541-C}, BIRC7_{239-C}, full-length BIRC7 variants were purified by glutathione-affinity; GST-MDM2_{428-C}-His-MDMX_{428-C} and GST-RNF2₁₋₁₁₄-His-BMI1₁₋₁₀₉ were purified by Ni²⁺-NTA chromatography followed by glutathioneaffinity; UbcH5B variants were purified by cation exchange and size exclusion chromatography. For ubiquitination assays, mouse Uba1 was expressed from pET23d (Novagen), charged with GST-Ub with 5 mM MgCl₂ and 5 mM ATP for 2h at 4°C and purified by glutathione-affinity chromatography eluted with 20 mM DTT, followed by anion exchange chromatography; His-Ub and ³²P-Ub were prepared as described previously³. Ub variants were cloned into pGEX2TK and purified as

described previously. UbcH5B variants were purified by cation exchange chromatography; ³²P-SMAC comprising residues 56-C was expressed from pET23d containing a C-terminal Protein kinase A recognition sequence (RRAVS) and purified by Ni-NTA affinity chromatography followed by size exclusion chromatography. All protein concentrations were determined by Bradford assay⁴ with bovine serum albumin as standard and Ub concentration was determined as described previously⁵. Proteins were stored in 25 mM Tris-HCl (pH 7.6), 0.15 M NaCl and 1 mM DTT or 25 mM HEPES (pH 7.0), 0.15 M NaCl and 1 mM DTT at -80°C.

Structural determination

The data were integrated with automated XDS⁶ and scaled using the CCP4 program suite⁷. BIRC7_{239-C}–UbcH5B_{RAS}~Ub complex crystals belong to space group P4₃2₁2 with two molecules in the asymmetric unit. Initial phases of BIRC7_{239-C}–UbcH5B_{RAS}~Ub were obtained by molecular replacement with PHASER⁸ using PDB 3EB6 (BIRC3 RING–UbcH5B complex) and PDB 3A33 (UbcH5B~Ub) as the search models, respectively. All models were built in COOT⁹ and refined using CCP4, CNS¹⁰ and PHENIX¹¹.

The structure of BIRC7_{239-C}–UbcH5B_{RAS}~Ub (Chains A-F) was refined at a resolution of 2.18 Å and the final model contained two copies of UbcH5B (Chain A residues 2-147 and Chain D residues 2-147), BIRC7_{239-C} (Chain B residues 242-298 and Chain E residues 242-298), Ub (Chain C residues 1-76 and Chain F residues 2-76). Residues with poor sidechain electron density were built as Ala. Details of the refinement statistics are shown in **Table 2**. All figure models were generated using PYMOL (Schrödinger).

Single turnover kinetics of di-Ub formation

UbcH5B was charged in a buffer containing 50 mM HEPES (pH 7.5), 50 mM NaCl, 5 mM MgCl₂, 5 mM ATP, 1 mM DTT, 0.3 U ml⁻¹ inorganic pyrophosphatase, 0.3 U ml⁻¹ creatine kinase, 5 mM creatine phosphate, mouse UBA1 (2.5 µM), ³²P-Ub variant (130 µM) and UbcH5B (66 µM) for 15 min at 23 °C. Charging was stopped by incubating the reaction with 0.25 U apyrase (Sigma) and 30 mM EDTA for 5 min at 23 °C. Different amounts of UbcH5B~³²P-Ub variants were then added to a reaction containing 50 mM HEPES (pH 7.5), 50 mM NaCl, His-Ub (820 µM; final concentration) and BIRC7239-C or BIRC3541-C variants. Final E3 concentrations are indicated in Supplementary Fig. 6a.f. Reactions were quenched with 2X SDS loading buffer containing 200 mM DTT at 30 s, resolved by SDS-PAGE, dried and exposed to a phosphorimager. Under these conditions, less than 15% of UbcH5B~³²P-Ub variants were transferred to His-Ub, thus representing initial rate. In addition there was no observable autoubiquitination of BIRC3_{541-C} variants and BIRC7_{239-C}. Di-Ub bands were quantified using ImageQuant (GE Healthcare). Control reactions lacking E3 at each UbcH5B~³²P-Ub variant concentration were performed for background subtraction during quantification. All reported kinetic parameters were determined by fitting at least two independent datasets to the Michaelis-Menten equation using SigmaPlot 8.0 (Systat Software Inc.).

References

- Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. *Nature* 435, 687-92 (2005).
- Mace, P.D. *et al.* Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. *J Biol Chem* 283, 31633-40 (2008).
- 3. Dou, H., Buetow, L., Hock, A., Sibbet, G.J., Vousden, K.H. & Huang, D.T. Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. *Nat Struct Mol Biol* **19**, 184-92 (2012).
- 4. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**, 248-54 (1976).
- Bohnsack, R.N. & Haas, A.L. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. *J Biol Chem* 278, 26823-30 (2003).
- 6. Kabsch, W. Xds. *Acta Crystallogr D Biol Crystallogr* **66**, 125-32 (2010).
- Collaborative Computational Project, N. "The CCP4 Suite: Programs for Protein Crystallography". *Acta Cryst.* D50, 760-763 (1994).
- 8. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. *Acta Crystallogr D Biol Crystallogr* **60**, 432-8 (2004).
- 9. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* **60**, 2126-32 (2004).
- Brunger, A.T. *et al.* Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta Crystallogr D Biol Crystallogr* 54, 905-21 (1998).
- Adams, P.D. *et al.* PHENIX: building new software for automated crystallographic structure determination. *Acta Crystallogr D Biol Crystallogr* 58, 1948-54 (2002).